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ABSTRACT: The ensemble Kalman filter (EnKF) and the 4D variational method (4DVar) are the most commonly used

filters and smoothers in atmospheric science. These methods typically approximate prior densities using a Gaussian and

solve a linear system of equations for the posteriormean and covariance. Therefore, strongly nonlinear model dynamics and

measurement operators can lead to bias in posterior estimates. To improve the performance in nonlinear regimes, mini-

mization of the 4DVar cost function typically follows multiple sets of iterations, known as an ‘‘outer loop,’’ which helps

reduce bias caused by linear assumptions. Alternatively, ‘‘iterative ensemble methods’’ follow a similar strategy of peri-

odically relinearizing model and measurement operators. These methods come with different, possibly more appropriate,

assumptions for drawing samples from the posterior density, but have seen little attention in numerical weather prediction

(NWP) communities. Last, particle filters (PFs) present a purely Bayesian filtering approach for state estimation, which

avoids many of the assumptions made by the above methods. Several strategies for applying localized PFs for NWP have

been proposed very recently. The current study investigates intrinsic limitations of current data assimilation methodology

for applications that require nonlinear measurement operators. In doing so, it targets a specific problem that is relevant to

the assimilation of remotely sensedmeasurements, such as radar reflectivity and all-sky radiances, which pose challenges for

Gaussian-based data assimilation systems. This comparison includes multiple data assimilation approaches designed re-

cently for nonlinear/non-Gaussian applications, as well as those currently used for NWP.
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1. Introduction

TheensembleKalmanfilter (EnKF;Evensen1994;Houtekamer

and Mitchell 1998; Evensen and van Leeuwen 2000) and the

four-dimensional variational method (4DVar; Thepáut and
Courtier 1991) are the most commonly used filters and

smoothers in atmospheric science. Ensemble/variational hy-

brid approaches (e.g., Hamill and Snyder 2000; Lorenc 2003;

Buehner 2005) combine the flow-dependent ensemble co-

variance from an EnKF with climate-based covariance from

variational methods. The methods have also become well-

established and widely accepted for global weather predic-

tion at major environmental prediction centers, such as the

European Centre for Medium-Range Weather Forecasts

(ECMWF), the Met Office, the Environment and Climate

Change Canada (ECCC), and the National Centers for

Environmental Prediction (NCEP). One strategy of the hy-

brid methods, denoted as ensemble-4DVar (E4DVar; Zhang

et al. 2009) in this manuscript, typically uses tangent linear

and adjoint model operators to minimize a cost function in

the same manner as the traditional 4DVar data assimilation

system. A second strategy is 4D-ensemble-Var (4DEnVar),

in which the cost function minimization is computed based on

an ensemble forecast instead of using tangent linear and ad-

joint models. In the 4DEnVar, temporal covariances are es-

timated from an ensemble of model trajectories that pass

through the observation time window. In either case, both

methods approximate prior densities using a Gaussian and

perform linearizations to relax these assumptions. Therefore,

strongly nonlinear model dynamics or measurement opera-

tors cause these methods to be biased, which leads to the

suboptimal use of major Earth observing systems, such as

satellite radiometers. For example, the combined impact of

highly nonlinear model dynamics and measurement opera-

tors introduces major data assimilation challenges in weather

regimes containing clouds or precipitation. As a result, most

infrared satellite assimilation studies mainly focus on clear-

sky observations (e.g., Errico et al. 2007; Fabry and Sun 2010;

Geer and Bauer 2011; Zou et al. 2013; Okamoto et al. 2014;

Minamide and Zhang 2017; Honda et al. 2018). This follows

despite the known benefits of assimilating cloudy radiances

for weather forecasting (e.g., Vukicevic et al. 2004; Stengel

et al. 2009; Privé et al. 2013). Some operational centers are

making efforts to cope with these issues and assimilate cloudy

and precipitating microwave radiances (e.g., Zhu et al. 2016;

Geer et al. 2017, 2019). For further details on significant ad-

vances and current plans of operational centers that are close

to implementing assimilation, we encourage readers to re-

view the summary presented in Geer et al. (2018).

Several procedures have been proposed to improve the

performance of these methods in nonlinear regimes. For ex-

ample, in order to deal with issues within the 4DVar system

(e.g., Bonavita et al. 2018), minimization of the 4DVar cost

function typically follows multiple sets of iterations to re-

linearize tangent linear and adjoints for the model, measure-

ment operators, or both around an improved background

solution. This step, known as an ‘‘outer loop,’’ helps reduceCorresponding author: Kenta Kurosawa, kkurosaw@umd.edu
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bias caused by linear assumptions, thus making Gaussian error

approximations more appropriate. The minimization strategy

follows the Gauss–Newton method, which is guaranteed to

approximate the posterior mode for local minima.

Alternatively, a number of methods fall under the generic

category of ‘‘iterative ensemble methods,’’ which follow a

similar strategy of periodic relinearization. Note that here

‘‘iterations’’ refers to multiple adjustments at a single time.

Both 4DVar and the iterative ensemble methods relinearize

the observation operator. The only difference is that in 4DVar,

the observation operator contains the nonlinearmodel. Gu and

Oliver (2007) introduced the ensemble randomized maximal

likelihood filter (EnRML) to handle nonlinearity by means of

iterations of the EnKF. Sakov et al. (2012) proposed the iter-

ative ensemble Kalman filter (IEnKF), which uses a deter-

ministic update form, ensemble square root filter, while

EnRML uses a stochastic update form, perturbed observations

method. Following the introduction of ensemble Kalman

smoother (EnKS; van Leeuwen and Evensen 1996; Evensen

and van Leeuwen 2000) for use in history matching by

Skjervheim et al. (2011), the iterative forms of smoothers have

developed into useful tools by the reservoir-engineering com-

munity for history matching reservoir models. Chen andOliver

(2012) proposed an iterative form of EnRML targeted for oil-

reservoir modeling, and Bocquet and Sakov (2014) developed

the iterative ensemble Kalman smoother (IEnKS), which ex-

tends IEnKF using a fixed-lag smoother with an ensemble

variational method.

Emerick and Reynolds (2012) introduced the multiple data

assimilation scheme (MDA) to improve EnKF estimates for

nonlinear cases by assimilating the same data multiple times

with the covariance matrix of the measurement errors multi-

plied by the number of data assimilation. We note that the

name ‘‘MDA’’ is somewhat deceiving, as it is simply an ap-

plication of tempering (Neal 1996). The process of the EnKF

with MDA (EnKF-MDA) is based on the idea that a ‘‘large

jump’’ between the forecast and analysis states could be re-

duced by assimilating the same data multiple times with in-

creased measurement errors. MDA yields the same updated

mean and covariance as would be obtained from assimilating

the same data with the original measurement error covariance

and no iterations when errors are Gaussian, and all operators

are linear (Emerick and Reynolds 2012). For the nonlinear

case, EnKF-MDA partly resolves issues with nonlinearity and

leads to smaller bias than a conventional EnKF. Emerick and

Reynolds (2013) developed the EnKS with MDA (EnKS-

MDA) for reservoir simulations, and Bocquet and Sakov

(2014) showed IEnKS with MDA significantly outperforms

standard EnKF and EnKS in strongly nonlinear regimes with a

simplified model. However, these methods have seen little at-

tention in numerical weather prediction (NWP) communities.

While the convergence properties of these methods are un-

known, numerical experiments performed by Evensen (2018)

suggest they can provide accurate solutions for mildly nonlin-

ear problems.

Last, particle filters (PFs) present a purely Bayesian fil-

tering approach for state estimation, which avoids many of

the linear/Gaussian assumptions of the above methods. PFs

provide a much more general, nonparametric estimate of

the model probability density function (PDF), which is ad-

vantageous for non-Gaussian problems as long as a suffi-

cient number of ensemble members exist. Nevertheless,

these methods can easily diverge when a relatively small

number of particles (ensemble members) are adopted for

data assimilation; see Bengtsson et al. (2008), Bickel et al.

(2008), and Snyder et al. (2008) for discussions on ensemble

size requirements for PFs. Several strategies are proposed to

overcome this filter collapse and apply PFs to data assimi-

lation problems for operational NWP models very recently.

One common effort to avoid filter divergence is to use lo-

calization, which restricts the influence of observations to

nearby state variables. For example, Poterjoy (2016) intro-

duced the localized PF, which assimilates observations with

independent errors sequentially to combine sampled parti-

cles from a standard bootstrap PF with prior particles in a

manner that satisfies a set of local constraints. Following this

work, Poterjoy and Anderson (2016) and Poterjoy et al.

(2017, 2019) demonstrate that the local PF works well for

high-dimensional systems. For these studies, the authors

compare the local PF with EnKFs for a simplified general

circulation model and both idealized and real mesoscale

convective systems in the Weather Research and Forecasting

(WRF) Model, respectively. Even more recently, Potthast et al.

(2019) applied an alternative localized PF for global weather

prediction using the Icosahedral Nonhydrostic Weather and

Climate (ICON)model, whichmarks the first successful test of a

PF in an operational framework. These studies provide an in-

centive to further explore the potential of localized PFs for

weather prediction, especially considering the theoretical ben-

efits they pose for assimilating remotely sensed measurements,

such as satellite radiance and radar reflectivity, which require

nonlinear measurement operators.

In addition to the methods described above, there are some

notable developments related to treatment of nonlinearity and

non-Gaussianity. For example, Bishop (2016) introduces the

GIGG-EnKF algorithm, which retains the accuracy of the

EnKF in the Gaussian case while lending it a high degree of

accuracy when the forecast and observation uncertainty are

gamma or inverse-gamma distributions. When conditions

are not suitable for EnKF, such as the distribution of the

prior and observation are not Gaussian distribution, and

the observation operator is nonlinear, Amezcua and van

Leeuwen (2014) apply a preprocessing step known as

Gaussian anamorphosis to obtain state variables and ob-

servations that better fulfill the Gaussianity conditions.

Fletcher (2010) and Fletcher and Jones (2014) present var-

iants of variational solvers for issues with lognormal and

mixed lognormal Gaussian distributed background and

observation errors. While many methods have been pro-

posed to deal with such difficult conditions, this study

mainly focuses on the tempered iteration approach, which is

relatively easy to implement in current NWP systems and

can deal with these problems well.

In this study, we discuss EnKF-MDA,EnKS-MDA,E4DVar,

4DEnVar, and the local PF data assimilation methods and

their use in applications that require nonlinear measurement
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operators. We also examine the sensitivity of each method to

user-specified parameters, which include ensemble size, co-

variance localization radius of influence (ROI), inflation co-

efficients, data assimilation window length (DAW), and the

number of iterations and outer loops. The comparisons are

conducted with the 40-variable dynamical system introduced in

Lorenz (1996, hereafter L96), using numerical experiments

performed with conventional EnKF and EnKS techniques

as benchmarks. This study provides a necessary first step

in understanding the complexity of assimilating remotely

sensed measurements in weather models, which will require

appropriate choices for data assimilation methodology going

forward.

Three main goals of these experiments are as follows: (1)

investigate intrinsic limitations of current data assimilation

methodology for applications that require nonlinear mea-

surement operators; (2) compare recently developed methods

designed for nonlinear/non-Gaussian applications with those

currently used for operational NWP; and (3) inform ongoing

efforts to design future geophysical modeling systems [e.g.,

NWP with Hurricane Analysis and Forecast System (HAFS)],

which will inevitably need to exploit remotely sensed

measurements.

The manuscript is organized in the following manner. In

section 2, we present algorithmic descriptions of each data

assimilation method. Section 3, describes settings for data as-

similation experiments and results from the cycling experi-

ments. Section 4 summarizes themain findings of this study and

discusses the potential of the methods for real numerical

weather prediction.

2. Data assimilation methods

In this section, we present the mathematical framework for

each method, along with the dynamical system adopted for

performing numerical experiments.We use lowercase boldface

font to indicate vectors, uppercase boldface font to indicate

matrices, and italic font to indicate scalars and nonlinear

operators.

In this study, let xf be an Nx-dimensional background

model forecast; let y be an Ny-dimensional set of obser-

vations; let H be the tangent linear operator that converts

the model state to the observation space; let R be the

Ny 3 Ny dimensional observation error covariance ma-

trix; and let P be the Nx 3 Nx dimensional error covari-

ance matrix. Superscript f and a denote forecast and analysis,

respectively.

a. EnKF

The EnKF is an approximate but efficient application of the

Kalman filter (Kalman 1960) and explicitly includes the time

evolution of error statistics, which operates effectively for

moderately nonlinear dynamical systems. In EnKF, P is rep-

resented by ensemble members statistically. There is no need

to consider the tangent linear model operator used in KF, so

EnKF has many advantages for nonlinear dynamics. The an-

alyzed state xa is given by the following Kalman filter equations

(e.g., Jazwinski 1970; Gelb et al. 1974):

xa 5 xf 1K(y2Hxf ) , (1)

K5PfHT(HPfHT 1R)21 , (2)

Pa 5 (I2KH)Pf (I2KH)T 1KRKT 5 (I2KH)Pf . (3)

For the ensemble formulation, the covariance matrix P can be

defined as

P5EET , (4)

E5
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
e
2 1

p [dx(1)j . . . jdx(Ne)] , (5)

where dx(l) is considered as a perturbation around x(l), which is

the lth member from an ensemble of Ne model states.

The Kalman filtering algorithm requires the computation of

Pa in (3). This process is equivalent to producing an appro-

priate analysis ensemble or ‘‘ensemble update,’’ which has a

sample covariance of Pa. For this study, all algorithms requir-

ing an EnKF to update ensemble members use the serial en-

semble square root filter (serial EnSRF; Whitaker and Hamill

2002). In general, this method provides a deterministic update

of the ensemble mean and perturbations about the ensemble

mean separately in a manner that satisfies the analysis mean

and error covariance given by Kalman filter theory. The serial

EnSRF assumes an ensemble update of the following form:

Ea 5 (I2 ~KH)Ef . (6)

Andrews (1968) provides one solution, which involves Kalman

gain matrix for perturbations of the following form:

~K5PfHT[(HPfHT 1R)21/2]T[(HPfHT 1R)1/2 1R1/2]21 . (7)

If observations are uncorrelated (R is diagonal), each obser-

vation is treated serially, which makes the terms HPfHT and R

scalar. In this case, (3) can be simplified by assuming ~K5aK

where a is a scalar value. The a was first derived by Potter

(1964) as

a5

 
11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

HPfHT 1R

s !21
. (8)

Thus, the serial version requires only the computation of a

scalar factor to weight the traditional Kalman gain, and

therefore is no more computationally expensive than the

EnKF. In this study, observations are assumed to be inde-

pendent of each other, which makes only the computation of

(8) necessary. When assimilating a single observation through

this formulation, K and H are vectors with Nx dimensions, and

R is scalar. Therefore, for an individual observation, the terms

PfHT and HPfHT reduce to scalars and can be computed even if

the measurement operator is fully nonlinear, which is done by

applying this operator on each ensemble member before cal-

culating sample statistics.

b. EnKS

The EnKS operates by storing ensemble members at past

times and then modifying them by a gain matrix that considers
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observations at the current time. Whitaker and Compo (2002)

introduced a serial ensemble square root smoother (serial

EnSRS), which uses Monte Carlo estimates of forecast–analysis

error cross covariances needed to compute the Kalman

smoother gain matrix. While they applied the serial EnSRS to

the fixed-lag Kalman smoother proposed by Cohn et al. (1994),

in this study, we apply it as a fixed-interval Kalman smoother.

Here, define a subscript notation mjn to indicate a quantity

at observation time m, which incorporates knowledge of all

observations up to and including time n. In this notation, (1)

can be expressed as

xakjk 5 xf
kjk21

1K(y2Hxf
kjk21

) . (9)

In the serial square root smoother, we use Pf

(m,n) to denote a

cross-covariance matrix between variables at times m and n.

The gain matrix K involves the forecast error cross-covariance

matrix Pf

(k,k2l) between xf
kjk21

and xf
k2ljk21

:

K5Pf

(k,k2l)H
T(HPfHT 1R)21 , (10)

where

Pf 5E
f

kjk21
E
fT

kjk21
, (11)

P
f

(k,k2l) 5E
f

kjk21
E

fT

k2ljk21
. (12)

In the formulation of Cohn et al. (1994), this quantity is com-

puted directly using the dynamical model because they developed

the fixed-lag smoother without ensembles. On the other hand, the

fixed-lag smoother with ensembles uses the dynamicalmodel only

when creating the background model forecast (Whitaker and

Compo 2002). This idea can be directly implemented to the fixed-

interval smoother. Note that the basic equations for the lag-0

implementation are identical to those of the serial EnSRF.

c. Multiple data assimilation (MDA)

Emerick andReynolds (2012) introduced theMDA scheme,

which assimilates the same data multiple times using an inflated

covariance matrix of the measurement errors. They proved the

equivalence between single and multiple data assimilations for

the linear-Gaussian case. Although MDA contains approxima-

tions for the fully nonlinear case and the equivalence does not

hold for the nonlinear case, MDA benefits from the inclusion of

smaller incremental ensemble corrections.

When the same set of observations are assimilated Na times,

the inflated measurement error covariance matrix is used in (2):

K5PfHT(HPfHT 1a
i
R)

21
, (13)

where

�
Na

i51

1/a
i
5 1: (14)

Note that in this paper, we use ai 5 Na for i 5 1,. . .,Na for all

experiments with MDA. Rommelse (2009) and Emerick and

Reynolds (2012) suggest that when the assimilation of accurate

data in non-Gaussian regimes requires a ‘‘large jump’’ between

the forecast and analysis state, the magnitude of the jump can

be overestimated by linear updates. This limitation of Gaussian

data assimilation techniques is observed frequently for the as-

similation of all-sky radiance measurements in weather models,

which is one of the reasons to motivate the use of observation

error inflation (e.g., Minamide and Zhang 2017) and other inge-

nious approaches as described in section 1. By using an inflated

error covariance, a potentially large spurious update in the state

vector is avoided. Going a step further, iterative techniques like

MDA replace single updates with a series of smaller updates,

which can correct filter or smoother updates that are too large.

In summary, the ensemble formulation of a fixed-interval

serial EnSRS, with and without MDA, are realized by the

following procedures. For DAW length l5 0, the serial EnSRS

reduces to the serial EnSRF, and forNa5 1, each iterative data

assimilation cycle with MDA reduces to a single-step data as-

similation scheme, such as standard EnKF and EnKS.

Algorithm 1: EnKS with MDA cycle

1) Function MDAEnKS-MDA_cycle:

2) for t 5 1:time do

3) if t is at the end of DAW then

4) t0 ) t2l

5) for i 5 1:iteration Na do

6) for k 5 0:DAW length l do

7) xat0 jt01k )Serial_EnSRS xf
t0 jt01k21

, xf
t01kjt01k21

, yt01k, aiR
� �

8) xf
t0 jt01k

) xat0 jt01k

9) xf
t0 jt021

) xat0 jt01l

10) for m 5 1:Ne do

11) xt11jt
f (m)

)Mx
a(m)
t0 jt

12) else

13) for i 5 1:iteration Na do

14) xatjt )Serial_EnSRS(xf
tjt21

, xf
tjt21

, yt, aiR)

15) xtjt21
f

) xatjt
16) for m 5 1: Ne do

17) x
f (m)
t11jt )Mx

a(m)
tjt

18) return

Algorithm 2: Serial EnSRS

1) Function: Serial_EnSRS xf
t2kjt21

, xf
tjt21

, y, R
� �

2) for j 5 1: Ny do

3) E
f

t2kjt21
5

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne 2 1

p dx
f (1)
t2kjt21

j . . . jdx f (Ne)
t2kjt21

h i
4) Ef

tjt21
5

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne 2 1

p dx
f (1)
tjt21

j . . . jdx f (Ne)
tjt21

h i
5) Pf 5E

f

tjt21
E

f T

tjt21

6) Pf

(t2k,t) 5Ef

t2kjt21
EfT

tjt21

7) K5P
f

(t2k,t)H
( j)T H(j)PfH(j)T 1R(j)
h i

21

8) xat2kjt 5 xf
t2kjt21

1K(y( j)2H( j)xf
tjt21

)

9) a5

0
@11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R(j)

H(j)PfH(j)T 1R(j)

s 1
A
21

10) ~K5aK

11) Ea
t2kjt 5Ef

t2kjt21
2 ~KH(j)Ef

tjt21

12) xat2kjt 5 xat2kjt 1Ea
t2kjt

13) xf
t2kjt21

) xat2kjt
14) return xat2kjt
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d. E4DVar and 4DEnVar

In this section, the equations of 4DVar, E4DVar, 4DEnVar

are introduced briefly. For further details on these methods, we

encourage readers to review the mathematical descriptions in

Liu et al. (2009), Poterjoy and Zhang (2015), and Bannister

(2017). The 4DVar method seeks a solution that minimizes the

misfit of a control variable to the background state xf0 at t5 0 and

observations yt at times t 5 0, 1, 2,. . . , t. The minimization is

carried out with respect to increments dx0 from xf0 (Courtier

et al. 1994). The cost function is expressed as the sum of back-

ground (Jb) and observation (Jo) terms:

J(dx
0
)5 J

b
(dx

0
)1 J

o
(dx

0
)

5
1

2
dxT0B

21dx
0
1

1

2
�
t

t50

(H
t
M

t
dx

0
2d

t
)TR21

t (H
t
M

t
dx

0
2d

t
) ,

(15)

whereB is the background error covariance andMt is the tangent

linear model operator. The vector dt contains the innovations at

each time along a model trajectory from xf0 and is given by

d
t
5 y

t
2H

t
[M

t
(xf0)] , (16)

where Mt and Ht are the nonlinear forecast model and obser-

vation operators, respectively. In practice, dx0 is replaced with

Uv, where v is the new control variable, and U is a square root

of the background error covariance matrix (B5 UUT) (Lorenc

2003). The cost function in the control variable space and the

gradient of the cost function with respect to the control vari-

ables become the following:

J(v)5
1

2
vTv1

1

2
�
t

t50

(H
t
M

t
Uv2 d

t
)TR21

t (H
t
M

t
Uv2 d

t
) , (17)

=
v
J5 v1�

t

t50

UTMT
t H

T
t R

21
t (H

t
M

t
Uv2d

t
) . (18)

For E4DVar and 4DEnVar, using a similar substitution

described above, dx0 is separated into two terms to include a

hybrid covariance in the variational cost function. For NWP

applications, the ensemble contribution of the hybrid covari-

ance is often much greater than the static covariance (Kleist

and Ide 2015); however, such a choice is directly dependent

upon the quality of ensemble, ensemble size, and model error.

For the L96 model, Poterjoy and Zhang (2015) found the static

error covariance to have a major impact only when an imper-

fect model is used for data assimilation, which is not explored

in the current study. Therefore, we omit the use of a static error

covariance to reduce the number of parameters to examine for

this study. As a result, we have

dx
0
5 dxe0 5Ueve , (19)

where dxe0 is the increment resulting from the ensemble-

estimated covariance. As described in Buehner (2005), Ue

can then be written as

Ue 5 [e(1)j . . . je(Ne)] , (20)

P+C5UeUeT , (21)

e(n) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
e
2 1

s
3diag(x

f (n)
0 2xf0)C

1/2, (n5 1, 2, . . . ,N
e
),

(22)

where + indicates element wise multiplication, and C is the

correlation matrix used for localizing the ensemble covariance.

From these equations, the cost function and the gradient of

E4DVar are found by substituting Ue for U and ve for v in (17)

and (18). Using an ensemble forecast stored at each observa-

tion time in DAW, MtU
e can be rewritten as

M
t
Ue 5 [M

t
e(1)j . . . jM

t
e(Ne)]

5 [ê(1)t j . . . jê(Ne)
t ] , (23)

ê(n)t 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
e
2 1

s
3 diag(x

f (n)
t 2 xft )C

1/2

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
e
2 1

s
3 diag(M

t
(x

f (n)
0 )2M

t
(xf0))C

1/2 . (24)

By substituting (23) into (17) and (18), the 4DEnVar cost

function and the gradient can be expressed without the tangent

and adjoint model.

Note that while E4DVar uses tangent linear and adjoint

models to propagate a localized error covariance through the

DAW, 4DEnVar requires the localization of time covariances.

Most previous studies use the same correlation matrix at each

time thus ignoring the complexity of introducing a localization

of time-dependent covariance (LTC) (Liu et al. 2009; Buehner

et al. 2010; Liu and Xiao 2013; Fairbairn et al. 2014; Poterjoy

and Zhang 2015).

The method also allows for the use of either the nonlinear

operator Ht or the tangent linear operator Ht in its place.

This study explores both approaches in 4DEnVar experi-

ments to identify which option presents the largest advan-

tage for nonlinear operators. To perform the localization,

we calculate the tangent linear operator Ht at each time and

use it to propagate a localized error covariance through the

DAW. Moreover, this study reruns the ensemble in outer

loops for 4DEnVar, despite the fact that it is prohibitively

costly for weather applications. This step is done to allow

for a more direct comparison with incremental E4DVar with

outer loops.

To form a hybrid analysis, the variational solution is typi-

cally taken as the posterior mean and posterior perturbations

from an EnKF are recentered about this solution at the

middle of the time window (Zhang et al. 2009; Poterjoy et al.

2014). This approach is more consistent with the methodol-

ogy adopted at major NWP modeling centers (Bannister

2017). For the current study, we instead add posterior per-

turbations to the mean analysis at the end of each DAW. This

option has a number of advantages, namely, the EnKF assimi-

lates measurements at the appropriate times over an assimila-

tion window, thus providing an EnKF posterior mean that is

theoretically equivalent to the 4DVar posterior mean in the
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absence of sampling error and nonlinearity. It also permits a

more direct comparison of smoothers and filters explored in

this study.

In summary, the ensemble formulation of E4DVar and

4DEnVar are realized by the following procedures.

Algorithm 3: Ensemble/variational hybrid data assimilation

without static error covariance

1) Function ensemble_variational_hybrid Uð e, xf0, y, RÞ
2) if 4DEnVar w/o LTC then

3) Ht ) Ht

4) while Outer Loop do

5) dt 5 yt 2Ht[Mt(x
f
0)]

6) while Inner Loop do

7) switch Hybrid do

8) case E4DVar do

9) Dt ) MtU
e

10) case 4DEnVar w/ LTC .or.

4DEnVar w/o LTC

11) Dt ) ê
(1)
t j . . . jê(Ne)

t

h i
12) J(ve)5

1

2
veTve

1
1

2
�t

t50(HtDtv
e 2 dt)

T
R21

t (HtDtv
e 2dt)

13) =ve J5 ve 1�t

t50D
T
t H

T
t R

21
t (HtDtv

e 2 dt)

14) ve 5 argmin(J(ve))

15) xf0 ) xf0 1Ueve

16) xa0 ) xf0
17) return xa0

e. The local PF

The current study uses the local PF proposed by Poterjoy

et al. (2019). For simplicity, this section highlights important

aspects of the local PF that are relevant to the comparisons per-

formed in this study. Our experiments take advantage of addi-

tional regularization, tempering, and hybrid strategies that are

unique to the local PF, which are briefly discussed in this section.

For full details on this methodology, we refer readers to Poterjoy

(2021, manuscript submitted to Quart. J. Roy. Meteor. Soc.).

The local PF assimilates observations serially, performing a

bootstrap PF update for particles projected onto the current

observation in the sequence, followed by a model-space up-

date. For a given observation y, the model-space update re-

places the standard bootstrap resampling step with one that

merges sampled particles and prior particles:

xny 5 x
y
1 r

1
+(xkn 2 x

y
)1 r

2
+(xkn 2 x

y
) , (25)

where xny is an updated particle, x
n is the nth prior particle, xkn is

the nth sampled particle, xy is the localized posterior mean

based on importance weights that consider all observations up

to y, and r1 and r2 are derived to satisfy the posterior mean and

variance of marginals. The sampled particles are selected

from a bootstrap resampling of past updated particles using a

cumulative distribution formed by weights calculated from

particle likelihoods for y. In general, the posterior particles

formed from linear combinations of the sampled and prior

particles are localized, because r1 and r2 are calculated based

on localized moments.

Poterjoy et al. (2019) provide several improvements to the

Poterjoy (2016) local PF, which are aimed at preventing par-

ticle weight collapse. In addition, Poterjoy (2021, manuscript

submitted to Quart. J. Roy. Meteor. Soc.) introduces regulari-

zation and tempering methodology to further improve filter

performance when sampling error is large. In short, regulari-

zation raises particle weights to a power b, which is pre-

determined to yield marginal particle weights that have a

specified ‘‘effective sample size,’’ similar to the methodol-

ogy described in Poterjoy et al. (2019). Regularization acts

as a heuristic means of preventing weight collapse, similar to

observation error inflation. It provides a strategy for as-

similating observations through tempered iterations (Neal

1996), each with a unique set of b coefficients. Unlike reg-

ularization, tempering does not introduce bias in the pos-

terior estimate.

The method also benefits from the use of a mixing param-

eter, g, to increase particle diversity in the vicinity of obser-

vations. As described in Poterjoy (2021, manuscript submitted

to Quart. J. Roy. Meteor. Soc.), r1 in (25) is multiplied by g,

which introduces a smooth ‘‘jittering’’ of particles. The coef-

ficients in r2 are then modified so that the first two posterior

moments are still maintained.

3. Cycling data assimilation experiments

We perform separate sets of data assimilation experiments

to investigate limitations for nonlinear applications and ex-

amine the sensitivity of the methods to user-specified param-

eters. These parameters include the number of iterations,

DAW, ensemble size, ROI, inflation, and measurement oper-

ators. The first two sets of experiments focus primarily on key

parameters for smoothers, which are known to be sensitive to

nonlinearity in model dynamics and measurement operators.

These parameters are the number of iterations and DAW

length. The third set of experiments focuses more broadly on the

comparison between filters and smoothers. For this purpose, we

select three types of observation networks, each differing pri-

marily in choice of measurement operator. The system param-

eters for each of these cases are summarized in Table 1.

a. Experimental design

1) MODEL

We examine several aspects of the data assimilation methods

by performing idealized numerical experiments with the L96

model (Lorenz 1996; Lorenz and Emanuel 1998). The model

consists of variables xi for i 5 1, 2,. . . , Nx, which are equally

spaced on a periodic domain. The variables are evolved in time

using the set of differential equations:

dx
i

dt
5 (x

i11
2 x

i22
)x

i21
2 x

i
1F , (26)

with cyclic boundaries: xi1Nx
5 xi and xi2Nx

5 xi. We integrate

(26) forward numerically using the fourth-order Runge–Kutta

method with a time step of 0.05 [units defined arbitrarily as 6 h;

see Lorenz (1996)]. For this study, we fix Nx at 40 and use

F 5 8.0, which causes the model to behave chaotically.
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2) OBSERVATIONS

In this study, we create observation networks ofNy5 10,Ny5
15, and Ny 5 20 observations that are evenly spaced on model

grid points. Note that for the case Ny 5 15, we line up the ob-

servation points so that they were evenly distributed (i.e., at grid

points 1, 4, 6, 9, 12, 14, 17, 20, 22, 25, 28, 30, 33, 36, 39). We

simulate measurements every time step (6h) by selecting values

from a truth simulation, applying one of the operators discussed

below, then adding uncorrelated Gaussian errors selected from

N(0, s2
yI), where s2 is the measurement error variance.

Experiments include three forms of measurement operator.

The ‘‘Linear Case’’ uses anH that selects model variables to be

directly observed; i.e., H(x)5 x̂, where x̂ is a subset Ny vari-

ables in x chosen by H. The ‘‘Nonlinear Case 1’’ extends H to

be quadratic: H(x)5 x̂+x̂. The ‘‘Nonlinear Case 2’’ introduces

log and absolute value operators to the interpolated values:

H(x)5 log[ABS(x̂)], where ABS indicates the absolute value

of each element. The second and third operators produce weak

and strong nonlinearities, respectively. Note that we apply a

simple gross error check for the third measurement operator to

prevent observations from being assimilated if the value of

ABS(x̂) is extremely small. If the difference between the ob-

served value and the background state is greater than four times

the standard deviation of the background state, the observation

will not be assimilated. Observation error standard deviations

are set to sy 5 1.0 for the first two experiments, but reduced to

sy 5 0.1 for the third case to compensate for the smaller infor-

mation content provided by this observation network.

3) OBSERVATION TIME LINE AND VERIFICATION

Observations are assimilated over a 3650-day period, and

root-mean-square errors (RMSEs) from the last 3550 days are

used to quantify the accuracy of the posterior analyses. The

first 100 days of data assimilation act as a spinup period to allow

members time to reach quasi-steady posterior solutions for the

given setup of the model and observation network.

In the first sets of experiments described below, we perform

direct comparisons of the different smoothers used for this

study. For these experiments, we calculate RMSEs at the be-

ginning of the DAW (smoother solution), because it more di-

rectly indicates how much information is being extracted from

observations at future times. For experiments shown later in this

section, which compare different forms of smoothers and filters,

we calculate RMSEs at the end of the DAW (filter solution).

4) TREATMENT OF SAMPLING ERRORS

Potential sources of bias in the estimation of the posterior

include small ensemble sizes relative to the state dimensions,

model errors, nonlinearities, and assumptions used to form

data assimilation algorithms. Therefore, heuristic covariance

localization strategies are needed to reduce noise introduced

from ensemble error approximations by performing a Schur

product between this matrix and an empirically defined cor-

relation matrix with a tunable length scale parameter, or ROI.

For this purpose, we use the fifth-order correlation function

given by Eq. (4.10) of Gaspari and Cohn (1999).

The posterior covariance is inflated by replacing ensemble

perturbations with linear combinations of posterior and prior

perturbations, which is known as a covariance relaxation

method (Zhang et al. 2004):

x
0a
n ) (12a)x

0a
n 1ax

0f
n . (27)

The a in (27) is called the ‘‘relaxation coefficient’’ and ranges

from 0 to 1, where a 5 0 implies no inflation. We adopt this

inflation strategy to remain consistent with Poterjoy andZhang

(2015), who perform a similar comparison of ensemble data

assimilation algorithms, including hybrid covariance forms of

E4DVar and 4DEnVar.

As previously stated, the local PF uses amixing parameter to

maintain particle diversity during updates.While this approach

is effective at preventing filter divergence with small ensem-

bles, it does not directly increase prior or posterior error var-

iance in the samemanner as relaxation. Similar to the a used in

the relaxation method the coefficient g is a scalar between 0

and 1. It further mixes prior particles and resampled particles

everywhere particles are updated in state space, including in

the vicinity of measurements.

b. Results

1) SENSITIVITY TO THE NUMBER OF OUTER ITERATIONS

The variational and MDA techniques present different it-

erative strategies for coping with nonlinearity in model dy-

namics and measurement operators. For the first set of

experiments, we explore the sensitivity of these methods to the

number of iterations. In addition to providing a direct com-

parison of different smoothers for a nonlinear application,

these experiments help motivate choices for iteration number

in the filter/smoother comparisons that follow. As previously

stated, we also explore the advantage of LTC, which is a lo-

calization of the ensemble covariance at each observation time

in the window calculated with the tangent linear operator Ht at

each time for nonlinear operators.

Figure 1 shows mean RMSEs of EnKS-MDA, E4DVar,

4DEnVar with LTC, and 4DEnVar without LTC from ex-

periments with Nonlinear Case 1. Ensemble sizeNe, relaxation

coefficient a, and DAW are fixed at 10, 0.3, and 24 h, respec-

tively. We find this window length to be sufficient for exploring

sensitivity to outer loops without adding computational cost.

We do not show results using Nonlinear Case 2 because all

TABLE 1. Configuration of cycling data assimilation experiments.

Expt H(x) sy Ne ROI a,g Ny Dt (h)

Linear Case x 1.0 10, 40 Variable Variable 20 6

Nonlinear Case 1 x2 1.0 10, 40 Variable Variable 20, 15, 10 6, 24

Nonlinear Case 2 log(jxj) 0.1 40, 100 Variable Variable 20 6
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methods tested in this study (other than the PF) experience

filter divergence when measurements are simulated with this

operator. These results are discussed in the filter/smoother

comparisons below.

For the observation networks tested in this study, we find

that increasing the number of iterations has little impact on

mean error for EnKS-MDA. For E4DVar and 4DEnVar,

however, we confirm that multiple outer loops are required for

optimal performance. Under various circumstances, outer

loops are also needed to prevent filter divergence with the

nonlinear measurement operator. For example, E4DVar with

ROI fixed at 1 and a single outer loop shows a worse score than

with multiple iterations. We also find that the minimum num-

ber of outer loops required to prevent filter divergence is

sensitive to ROI. E4DVar experiments using anROI of 3 and 5

require 2 and 3 outer iterations, respectively. Nevertheless, the

improvements of multiple iterations beyond these numbers

become negligible once a sufficient number is reached.

We also find E4DVar to be more stable than 4DEnVar for

the tested observation networks. Recall, this method uses the

tangent linear model to propagate increments along a nonlin-

ear trajectory to future times, and its adjoint to propagate

sensitivity gradients backward from observation times to the

beginning of the DAW. The trajectory is updated between

outer iterations to ensure that values propagated by the

tangent linear and adjoint remain small enough for linear

approximations to remain valid. In addition, the input of

ensemble error covariance at a single time in this process (at

the beginning of the DAW) greatly simplifies the removal of

spurious error correlations through localization (Fairbairn

et al. 2014; Poterjoy and Zhang 2015). For this reason, we find

configurations of 4DEnVar that use LTC to be more stable

than configurations without LTC. Based on this finding, we

use this strategy for all remaining 4DEnVar experiments.

2) SMOOTHER PERFORMANCE AS A FUNCTION OF DATA

ASSIMILATION WINDOW LENGTH

Several of the methods examined in this study are smoothers,

which are sensitive to the choice of DAW. For the next set of

experiments, we compare meanRMSEs of EnKS, EnKS-MDA,

E4DVar, and 4DEnVar as a function ofDAW(Fig. 2).As stated

above, the verification for these experiments focuses on the

posterior smoothing density; i.e., the analysis at the beginning of

the DAW. For these experiments, we fix the ensemble size Ne,

relaxation coefficient a, and ROI at 10, 0.3, and 3, respectively.

The number of iterations (MDA) and outer loops (Var) are both

set to 3. These decisions are based on results from the previous

set of experiments, showing little benefit beyond 3 iterations for

chosen model and observation networks. As we revisit later, in

experiments with the Nonlinear Case 1, the observation value is

closer to the truth all the time, making the RMSEs and order of

magnitude smaller than in the Linear Case.

We start by examining the impact of MDA on the EnKS.

Our experiments show that MDA provides slight benefits

over noniterative configurations, even at DAW length l5 0 h

and linear H (Fig. 2a). Note that EnKS is identical EnKF for

this DAW length, so no benefits are expected from the iter-

ations. One possible reason for the difference in skill between

EnKS and EnKS-MDA at DAW length l5 0 h is due to small

differences in how ensemble perturbations are adjusted

through iterative steps. For linear cases with Gaussian prior,

MDA yields the same posterior mean and covariance as

would be obtained without iterations. As suggested by

Rommelse (2009), the extra uncertainty included in mea-

surements during each iteration ensures that adjustments

from prior to posterior values are dampened, which is bene-

ficial when linear updates overestimate the true impact of

measurements that relate nonlinearly to model variables.

Therefore, MDA provides an opportunity for the EnKF to

remove overadjustments that may occur during previous it-

erations. We suspect that a combination of serial processing

of observations and iterative updates of members leads to

slight improvements in how the EnKF samples from the

posterior density, which is assumed to be non-Gaussian be-

cause of the nonlinear model. This finding explains why the

MDA approach yields small improvements in posterior esti-

mates over successive data assimilation steps, which is also

explored later.

FIG. 1. Mean analysis RMSEs as a function of the number of iteration or outer loop. Results

are shown for the Nonlinear Case1. Values are from the experiment with EnKS-MDA (tri-

angles), E4DVar (circles), 4DEnVar without LTC (squares), and 4DEnVar with LTC (dia-

monds), and ROI set to 1 (blue), 3 (red), and 5 (green). The RMSEs are calculated at the start

of the DAW (smoother solution).
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The advantage of the EnKS-MDA over the EnKS with the

DAW length l . 0 h is shown in both the linear and nonlinear

cases. For both experiments, the MDA scheme resolves issues

with the nonlinearity of the model and observation measure-

ment operators in DAW. EnKS is stable even with the

longer DAW, but the quality of the analysis starts to de-

grade as the DAW length is increased beyond a certain

point, because sampling error increases as the DAW be-

come longer. Compared to 4DEnVar, EnKS is more stable

with longer DAW. This indicates that the forecast error

covariance matrix used for smoother is approximated more

accurately by cross-covariance matrix (Pf

(k,k2l)) in EnKS

than by ensemble-based error covariance in 4DEnVar.

Unlike the variational methods, the EnKS samples directly

from the smoothing density rather than using a hybrid

strategy of recentering EnKF perturbations about a varia-

tional solution. Furthermore, the 4DEnVar experiment

contains higher RMSEs than E4DVar because of the diffi-

culty required in removing sampling errors from temporal

error covariances when Ne is small (Fairbairn et al. 2014;

Poterjoy and Zhang 2015).

3) FILTER PERFORMANCE

In this section, we present results from experiments that

examine the sensitivity and limitations of EnKF, EnKF-MDA,

EnKS, EnKS-MDA, E4DVar, 4DEnVar, and the local PF to

ROI, relaxation coefficient a, PF mixing coefficient g, and the

observation measurement operators. For all experiments,

DAW for EnKS, EnKS-MDA, E4DVar, and 4DEnVar is set

to 24 h, and the number of iterations and outer loops are set to

3. For the local PF, the regularization operates only when the

effective ensemble size Neff falls below a target value of Neff.

The target Neff is fixed at Nt
eff 5 0:53Ne for all experiments.

We define filter divergence objectively by flagging configura-

tions that produced 100-cycle average RMSEs larger than 2

with NA for ‘‘not available’’ in the figures.

Figure 3 shows mean RMSEs from the experiment with the

Linear Case. Results from all methods, which use a fixed en-

semble size Ne of 10, are displayed in charts that show RMSE

as a function of tunable variables used to reduce the impact of

sampling error. For example, Fig. 3 demonstrates that the

optimal ROI and a are comparable for EnKF, EnKF-MDA,

EnKS, EnKS-MDA, E4DVar, and 4DEnVar. In most cases,

the optimal scores are typically found near values that lead to

filter divergence. RMSEs from the local PF are slightly worse

due to the small number of particles used in these experiments.

Figure 4 shows results from experiments with the same settings

except Ne is increased to 40. As expected, all methods become

more stable and require less localization (larger ROI) and less

inflation (smaller a and g) as Ne increases. Comparing the re-

sults of the local PF from Figs. 3 and 4, it is clear that the larger

ensemble size is required for the local PF to outperform the

methods with a Gaussian prior with the tested observation

network. EnKS shows clearly better performances than EnKF,

FIG. 2. Mean analysis RMSEs as a function of smoother lag. Results are shown for (a) Linear

Case and (b) Nonlinear Case 1, with the EnKS (blue), the EnKS-MDA (red), the E4DVar

(green), and the 4DEnVar (magenta). The number of iterations and outer loops is fixed at 3 for

both cases. The RMSEs are calculated at the start of the DAW (smoother solution).
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and MDA makes EnKF and EnKS slightly improved, even

with a linear measurement operator because of the reason

mentioned in section 3b(3).

Results from Nonlinear Case 1 experiments using Ne 5 10

are shown in Fig. 5. Unlike experiments with the Linear op-

erator, filter divergence occurs without setting strict limits on

ROI and inflation coefficients for all methods. Despite the

nonlinear measurement operator in these experiments, we find

no benefits from the assimilation methods designed specifically

for non-Gaussian applications, namely, EnKF-MDA and the

local PF. We believe this result occurs because of the accuracy

and frequency at which these measurements are collected. For

model variables that can reach magnitudes of O(10), measur-

ing the square of these variables with an error variance of 1

FIG. 3. Mean analysis RMSEs estimated for a range of (a)–(f) relaxation coefficient a and (g) PF mixing coef-

ficient g and ROI. Results are shown for experiments with the Linear Case and ensemble size is fixed at 10. Black

shading indicates higherRMSEs, NA indicates that filter divergence occurs during the experiment, and the smallest

errors are indicated by the black boxes. The RMSEs are calculated at the end of the DAW (filter solution).
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yields highly accurate information for characterizing the pos-

terior. This factor, combined with the frequency of these

measurements lead to prior and posterior members that re-

main close to the truth at all times, thus making Gaussian as-

sumptionsmore valid.We revisit this property of theNonlinear

Case 1 measurement operator in the next section.

These experiments also continue to show clear benefits of

E4DVar and 4DEnVar over EnKF, both in terms of stability

and accuracy. We hypothesize that the 4D data assimilation

methods are less sensitive to sampling noise, which becomes

the dominant source of bias in mildly nonlinear regimes.

Likewise, we find E4DVar to be more stable than 4DEnVar

when Ne is small, owing mostly to the localization strategy

adopted by this method. We note that all algorithms approach

similar RMSEs as ensemble size increases; i.e., Fig. 6 shows

results with Ne 5 40 for the same observation network. The

reason why E4DVar and 4DEnVar are more stable than EnKS

is due to the small number of ensembles and the nonlinear

observations that prevent from accurately estimating of the

cross-covariance matrix in the Serial EnSRS.

FIG. 4. As in Fig. 3, but for ensemble size fixed at 40.
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Figure 7a shows the mean RMSEs from experiments of the

local PF that usemeasurements simulated with Nonlinear Case

2 andNe5 40. For this configuration, filter divergence occurs in

all methods except the local PF, owing to the strong nonline-

arity in the measurement operator. This observation network

presents a case where nonlinearity in the application becomes a

much larger factor than sampling error in ensemble-estimated

prior and posterior distributions. Even with Ne 5 100, the

Gaussian-based methods fail to provide stable solutions de-

spite the potentially large amount of information contained in

these measurements, as indicated by the low RMSEs in the

local PF posterior (Fig. 7b). Since the local PF makes no

FIG. 5. Mean analysis RMSEs estimated for a range of (a)–(f) relaxation coefficient a and (g) PF mixing

coefficient g and ROI. Results are shown for experiments with the Nonlinear Case 1 and ensemble size is fixed

at 10. Black shading indicates higher RMSEs, NA indicates that filter divergence occurs during the experi-

ment, and the smallest errors are indicated by the black boxes. The RMSEs are calculated at the end of the

DAW (filter solution).
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parametric assumptions about prior densities, non-Gaussian

observation-space priors, which are produced by nonlinear

measurement operators, do not have a negative impact on the

filter. Therefore, it can continue to extract information from

the observation network regardless of nonlinearity in H.

These results confirm past studies, showing that local PF

provides benefits when Ne is sufficiently large or when the

observation operator is strongly nonlinear. It also demon-

strates limitations in iterative techniques for cases where the

observation function is quadratic and the posterior may be

bimodal.

4) FILTER PERFORMANCE FOR SPARSE OBSERVATION

NETWORKS

Using the mildly nonlinear observation operator (Nonlinear

Case 1), we investigate the behavior of each method for in-

creasingly sparse observation networks. These experiments use

an observation frequency of 24 h, which is increased from 6 h in

FIG. 6. As in Fig. 5, but for ensemble size fixed at 40.
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previous experiments, and Ny 5 20, 15, and 10 for equally

spaced measurements at each observation time.We also fix the

DAW for smoothers at 48 h; see Table 1 for full summary.

These results are summarized in Figs. 8–10 using the same

graphics adopted in the previous section comparing filter

performance.

Compared to EnKF, the performance of EnKS becomes

slightly worse for these observation networks. As discussed in

Evensen and van Leeuwen (2000), the EnKS differs from the

EnKF by computing updates of the model parameters using all

the observations in DAW simultaneously rather than using

recursive updates in time. Therefore, with these settings, the

recursive updates of EnKF keep the model solutions close to

the truth at any given time during the experiment, and operate

on marginal densities that are relatively close to Gaussian at

any given time. While posterior marginals of the smoothing

density are expected to be close toGaussian at the beginning of

theDAW (Morzfeld andHodyss 2019), marginals near the end

of the DAW can evolve non-Gaussian characteristics because

of nonlinearity in the model.

The benefits of MDA for EnKF are clearly shown in Figs. 8

and 9. For suboptimal configurations of the EnKF, prior

members exhibit a larger variance thus allowing nonlinearity in

H to become a significant source of bias for Gaussian methods.

Therefore, the optimal EnKF configuration remains almost the

samewithMDA, but the set of parameters over which the filter

remains stable becomes larger than that of the standard EnKF.

For these observation networks, careful choices of ROI and

a are sufficient for mitigating bias caused by Gaussian as-

sumptions, but MDA helps prevent filter divergence when

these parameters are improperly chosen.

For a long DAW (48 h) E4DVar becomes more stable than

4DEnVar with Ny 5 20 (Fig. 8), but both methods diverge

when observation density is decreased further (Figs. 9 and 10).

For these experiments, we find EnKS-MDA to be more ac-

curate than the EnKS and much more stable than the varia-

tional methods. This result is anticipated in nonlinear regimes,

since incremental updates reduce potential overadjustments by

the ensemble smoother over the time window. As previously

stated, the improved performance over E4DVar and 4DEnVar

for sparse observation networks (Fig. 9) must follow from the

ability of EnKS-MDA to sample directly from the smoothing

density, rather than relying on a hybrid approach, which is a

clear advantage of this method. Algorithmically, the EnKS

operates in a manner that is very similar to 4DEnVar, but with

the added benefit of updating ensemble perturbations about

the posterior mean, rather than recentering EnKF perturba-

tions about the posterior mode.

For the experiment with Ny 5 15, we also verify the second

moment of the posterior to examine potential shortcomings in

uncertainty estimates. The observation network and ensemble

size used in these simulations poses challenges for several data

assimilation method used here, in that filter divergence is

prevented for a narrower range of parameters than previous

FIG. 7. Mean analysis RMSEs estimated for a range of PF mixing coefficient g and ROI. Filter divergence occurs

in all methods except the local PF, so only results of the local PF are shown for experiments with theNonlinear Case

2 and ensemble size is fixed at (a) 40 and (b) 100. Black shading indicates higher RMSEs, NA indicates that filter

divergence occurs during the experiment, and the smallest errors are indicated by the black boxes. The RMSEs are

calculated at the end of the DAW (filter solution).
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experiments. Figure 11 shows the ratio of spread to RMSEs,

indicating whether the ensemble spread is overestimated or

underestimated with respect to the RMSE. The results of all

methods are presented except E4DVar and 4DEnVar, which

do not estimate posterior variance—recall that ensemble per-

turbations are updated using an EnKF instead. Ideally, the

spread and RMSE should be equivalent, but sampling error

and assumptions made during data assimilation may lead to

inconsistent results. Likewise, heuristic techniques for treating

sampling errors, such as localization and covariance relaxation

can also introduce suboptimal uncertainty estimates. For all

filters and smoothers examined in this study, the best match

between spread and RMSE tends to occur when RMSE is at a

minima (Figs. 11a–d). The farther away from the optimal pa-

rameter settings, the larger the mismatch between spread and

RMSE. As such, filter divergence occurs when the spread be-

gins to become overestimated or underestimated for all

methods (Figs. 11a–d).

FIG. 8. As in Fig. 6, but for the frequency of observations and DAW fixed at 24 and 48 h, respectively.
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Despite the difficulty posed by these observation net-

works, we find that the local PF can be configured to produce

stable results, even for data-sparse regimes, which was ex-

pected for this method (Poterjoy 2021, manuscript submit-

ted toQuart. J. Roy. Meteor. Soc.). This property of the local

PF is illustrated for the Ny 5 10 case, where it is the only

method that does not diverge for all parameter value

(Fig. 10). These results demonstrate challenges that exist for

the mildly nonlinear observation operator as the spatial and

temporal density of measurements decreases to yield larger

prior uncertainty.

5) LOCAL PF PERFORMANCE AS A FUNCTION OF

ENSEMBLE SIZE

Figure 12 shows the mean RMSEs of the local PF as a

function of ensemble size. These experiments use a fixed PF

mixing coefficient of g5 0.3 and twoNt
eff values of 0.23Ne and

0.8 3 Ne. The results are similar for the cases with the linear

FIG. 9. As in Fig. 8, but for the number of observations fixed at 15.
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and mildly nonlinear measurement operators (Figs. 12a,b) in

that optimal ROI increases with ensemble size.

This is because the large ensemble size yields fewer sampling

errors thus needing less localization. For the strongly nonlinear

measurement operator, however, the difference in RMSEs for

the range of ROI choices become small as the ensemble size

increases (Fig. 12c). This result may reflect either the limited

information contained in these measurements. That is, because

they only observe the log of the absolute value of variables,

distant multivariate updates from these measurements are

truly very small, thus requiring very large ensemble sizes to

estimate accurately. They may also suggests that sampling er-

rors and other factors, such as assumptions made by local PF

update equations, become less dominant for nonlinear appli-

cations of this type.

Furthermore, the experiments demonstrate a dependence of

optimalNt
eff on ensemble size.When the ensemble size is small,

experiments with higher Nt
eff show more accurate results. As

the ensemble size increases, the lower Nt
eff shows smaller

posterior RMSEs. This suggests that the larger Nt
eff can result

in overinflation when the ensemble size is large.

4. Conclusions

In geophysical models, such as those used for numerical

weather prediction, strongly nonlinear model dynamics and

measurement operators can cause data assimilationmethods to

be biased. This study examines several procedures that are

developed to overcome challenges posed by nonlinear opera-

tors, such as periodic relinearization of tangent linear and ad-

joints in variational schemes, likelihood factorizations adopted

by iterative ensemble filters and smoothers, and localized

particle filters. These methods—some of which were originally

designed for applications outside the weather community—are

compared with methods currently used for operational NWP,

namely, EnKFs and hybrid variational methods with and

without model adjoints.

This study adopts the 40-variable model of Lorenz (1996) to

examine the selected data assimilation approaches. The small

dimension of this model allow for extensive testing of each

technique using a large variety of observation networks, each

varying in density and the type of observations provided. For

several observation networks used in this study, relinearization

of the model and measurement operators between outer iter-

ations are required to prevent filter divergence. Once a suffi-

cient number of outer iterations are reached to achieve stable

results, the improvements are negligible.

The wide range of observation networks examined in this

study yields a diverse set of results, which are summarized

using posterior RMSEs.We acknowledge that this metric is not

ideal for non-Gaussian regimes, particularly those character-

ized as multimodal. Nevertheless, the sharp failure of various

techniques for non-Gaussian problems are easily identified by

large values of RMSEs.

Eachmethod examined in this study has clear advantages for

specific regimes—which are identified to be a function of

sampling error, nonlinearity in measurement operators, and

observation density. This finding motivates the use of dif-

ferent choices of data assimilation methodology, depending

on application.

The ensemble-variational smoother with an adjoint model,

E4DVar, produces smaller RMSEs than 4DEnVar for all ob-

servation networks tested in this study. It also outperforms all

other methods in regimes where sampling error is high, but the

model solution is well-constrained by numerous accurate

measurements; i.e., in weakly nonlinear regimes. This study

also compares variational methods to an ensemble smoother,

which is adapted from the fixed-lag EnSRS of Whitaker and

Compo (2002). For regimes where sampling error is a more

dominant sources of posterior bias than nonlinearity, the EnKS

performs better than its filter counterpart. Adding iterations to

EnKF and EnKS updates through MDA results in improved

results for all nonlinear regimes, particularly for sparse ob-

servation networks and long DAW lengths. The EnKS with

MDA is also found to outperform all methods for data as-

similation problems characterized by high sampling error and

weak nonlinearity. Likewise, it provides stable results in non-

linear regimes that cause E4DVar and 4DEnVar to experience

filter divergence. For applications of this type, EnKS-MDA

benefits from its ability to sample directly from the posterior

smoothing density, rather than relying on a separate EnKF to

update perturbations about a maximum likelihood solution.

Furthermore, ensemble filters outperform smoothers when

nonlinearity in measurement operators or model dynamics

FIG. 10. As in Fig. 8, but for the number of observations fixed at 10. Filter divergence occurs in all methods except

the local PF, so only results of the local PF are shown.
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have a dominant role in the data assimilation applications.

This finding is consistent with past studies that compare filters

and smoothers for problems of this type (Evensen and van

Leeuwen 2000). For highly nonlinear regimes, the local PF is

the only method that produces accurate results. The benefit of

PF-based methodology, however, comes with the trade-off of

being more sensitive to sampling error. Therefore, it requires

large ensemble sizes to produce RMSEs as low as ensemble

and variational smoothers for quasi-linear regimes.

Owing to the nature of this study, all comparisons are per-

formed in an idealized framework. These findings will ulti-

mately help guide future data assimilation decisions for real

geophysical problems, where the computational cost of ex-

ploring the sensitivity of data assimilation methodology and

parameters is prohibitive. The major findings of this study

demonstrate when to expect Gaussian filters and smoothers to

be suboptimal and under what conditions iterative techniques

provide added value over conventional methods. Choices of

nonlinear measurement operators in this study are motivated

by challenges faced by high-impact weather events, such as

severe convective storms and tropical cyclones. In particu-

lar, all-sky satellite radiance measurements provide exten-

sive, near-continuous data coverage for tropical cyclones

over open oceans. These measurements are often difficult to

use, owing to the highly non-Gaussian (often multimodal)

observation-space priors produced by nonlinear measure-

ment operators. New operational weather prediction sys-

tems, such as NOAA’s Hurricane Analysis and Forecast

System (HAFS), will ultimately need to overcome barriers

that currently exist in Gaussian-based data assimilation

FIG. 11. Ratio of ensemble spread tomean analysis RMSEs estimated for a range of (a)–(d) relaxation coefficient

a and (e) PF mixing coefficient g and ROI. The experimental setting is as in Fig. 9. NA indicates that filter di-

vergence occurs during the experiment. The RMSEs and spread are calculated at the end of the DAW (filter

solution).
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methodology to fully leverage measurements of this type, as

several operational centers have made significant advancements

to copewith the difficult conditions in the past years. Experiments

performed in this study motivate applications of iterative en-

semble approaches and the local PF for problems of this type.

Acknowledgments. Funding for this work was provided by

NOAAGrant NA20OAR4600281 and NSF/CAREERAward

AGS1848363.

Data availability statement. All software used to generate

results for this study is available upon request from the

corresponding author.

REFERENCES

Amezcua, J., and P. J. van Leeuwen, 2014: Gaussian anamorphosis

in the analysis step of the EnKF: A joint state-variable/

observation approach. Tellus, 66A, 23493, https://doi.org/

10.3402/tellusa.v66.23493.

Andrews, A., 1968: A square root formulation of the Kalman co-

variance equations. AIAA J., 6, 1165–1166, https://doi.org/

10.2514/3.4696.

Bannister, R. N., 2017: A review of operational methods of varia-

tional and ensemble-variational data assimilation. Quart.

J. Roy. Meteor., 143, 607–633, https://doi.org/10.1002/qj.2982.

Bengtsson, T., P. Bickel, and B. Li, 2008: Curse-of-dimensionality

revisited: Collapse of the particle filter in very large scale

systems. Probability and Statistics: Essays in Honor of David

A. Freedman, D. Nolan and T. Speed, Eds., Vol. 2, Institute of

Mathematical Statistics, 316–334.

Bickel, P., B. Li, and T. Bengtsson, 2008: Sharp failure rates for the

bootstrap particle filter in high dimensions. Pushing the Limits

of Contemporary Statistics: Contributions in Honor of Jayanta

K. Ghosh, B. Clarke and S. Ghosal, Eds., Vol. 3, Institute of

Mathematical Statistics, 318–329.

Bishop, C. H., 2016: The GIGG-EnKF: Ensemble Kalman filtering

for highly skewed non-negative uncertainty distributions.

Quart. J. Roy. Meteor. Soc., 142, 1395–1412, https://doi.org/

10.1002/qj.2742.

Bocquet, M., and P. Sakov, 2014: An iterative ensemble Kalman

smoother.Quart. J. Roy. Meteor. Soc., 140, 1521–1535, https://

doi.org/10.1002/qj.2236.

Bonavita, M., P. Lean, and E. Hólm, 2018: Nonlinear effects in

4D-Var. Nonlinear Processes Geophys., 25, 713–729, https://

doi.org/10.5194/npg-25-713-2018.

Buehner, M., 2005: Ensemble-derived stationary and flow-

dependent background-error covariances: Evaluation in a

quasi-operational NWP setting.Quart. J. Roy. Meteor. Soc.,

131, 1013–1043, https://doi.org/10.1256/qj.04.15.

——, P. L. Houtekamer, C. Charette, H. Mitchell, and B. He, 2010:

Intercomparison of variational data assimilation and the en-

semble Kalman filter for global deterministic NWP. Part II:

One-month experiments with real observations. Mon. Wea.

Rev., 138, 1567–1586, https://doi.org/10.1175/2009MWR3158.1.

Chen, Y., and D. S. Oliver, 2012: Ensemble randomized maximum

likelihood method as an iterative ensemble smoother. Math.

Geosci., 44, 1–26, https://doi.org/10.1007/s11004-011-9376-z.

Cohn, S. E., N. Sivakumaran, and R. Todling, 1994: A fixed-lag

Kalman smoother for retrospective data assimilation.Mon.

Wea. Rev., 122, 2838–2867, https://doi.org/10.1175/1520-

0493(1994)122,2838:AFLKSF.2.0.CO;2.

Courtier, P., J.-N. Thepáut, andA. Hollingsworth, 1994: A strategy

for operational implementation of 4D-Var, using an incre-

mental approach.Quart. J. Roy. Meteor. Soc., 120, 1367–1387,

https://doi.org/10.1002/qj.49712051912.

Emerick, A. A., and A. C. Reynolds, 2012: History matching time-

lapse seismic data using the ensemble Kalman filter with

multiple data assimilations. Comput. Geosci., 16, 639–659,

https://doi.org/10.1007/s10596-012-9275-5.

——, and ——, 2013: Ensemble smoother with multiple data as-

similation. Comput. Geosci., 55, 3–15, https://doi.org/10.1016/

j.cageo.2012.03.011.

FIG. 12. Mean analysis RMSEs of the local PF as a function of ensemble size. Results are

shown for (a) Linear Case, (b) Nonlinear Case 1, and (c) Nonlinear Case 2. Values are from the

experiment withNeff fixed at 0.203Ne (solid lines) and 0.803Ne (dashed lines), andROI fixed

at 2 (blue), 5 (red), and 8 (green).

JULY 2021 KUROSAWA AND POTER JOY 2387

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 06/30/21 02:21 AM UTC

https://doi.org/10.3402/tellusa.v66.23493
https://doi.org/10.3402/tellusa.v66.23493
https://doi.org/10.2514/3.4696
https://doi.org/10.2514/3.4696
https://doi.org/10.1002/qj.2982
https://doi.org/10.1002/qj.2742
https://doi.org/10.1002/qj.2742
https://doi.org/10.1002/qj.2236
https://doi.org/10.1002/qj.2236
https://doi.org/10.5194/npg-25-713-2018
https://doi.org/10.5194/npg-25-713-2018
https://doi.org/10.1256/qj.04.15
https://doi.org/10.1175/2009MWR3158.1
https://doi.org/10.1007/s11004-011-9376-z
https://doi.org/10.1175/1520-0493(1994)122<2838:AFLKSF>2.0.CO;2
https://doi.org/10.1175/1520-0493(1994)122<2838:AFLKSF>2.0.CO;2
https://doi.org/10.1002/qj.49712051912
https://doi.org/10.1007/s10596-012-9275-5
https://doi.org/10.1016/j.cageo.2012.03.011
https://doi.org/10.1016/j.cageo.2012.03.011


Errico, R., P. Bauer, and J.-F. Mahfouf, 2007: Issues regarding the

assimilation of cloud and precipitation data. J. Atmos. Sci., 64,

3785–3798, https://doi.org/10.1175/2006JAS2044.1.

Evensen, G., 1994: Sequential data assimilation with a nonlinear

quasi-geostrophic model using Monte Carlo methods to

forecast error statistics. J. Geophys. Res., 99, 10 143–10 162,

https://doi.org/10.1029/94JC00572.

——, 2018: Analysis of iterative ensemble smoothers for solving

inverse problems. Comput. Geosci., 22, 885–908, https://

doi.org/10.1007/s10596-018-9731-y.

——, and P. J. van Leeuwen, 2000: An ensemble Kalman smoother

for nonlinear dynamics. Mon. Wea. Rev., 128, 1852–1867,

https://doi.org/10.1175/1520-0493(2000)128,1852:AEKSFN.
2.0.CO;2.

Fabry, F., and J. Sun, 2010: For how long should what data be as-

similated for the mesoscale forecasting of convection and

why? Part I: On the propagation of initial condition errors and

their implications for data assimilation. Mon. Wea. Rev., 138,

242–255, https://doi.org/10.1175/2009MWR2883.1.

Fairbairn, D., S. R. Pring, A. C. Lorenc, and I. Roulstone, 2014: A

comparison of 4DVar with ensemble data assimilation

methods. Quart. J. Roy. Meteor. Soc., 140, 281–294, https://

doi.org/10.1002/qj.2135.

Fletcher, S., 2010: Mixed Gaussian-lognormal four-dimensional

data assimilation. Tellus, 62A, 266–287, https://doi.org/

10.1111/j.1600-0870.2010.00439.x.

——, and A. S. Jones, 2014: Multiplicative and additive incre-

mental variational data assimilation for mixed lognormal

Gaussian errors. Mon. Wea. Rev., 142, 2521–2544, https://

doi.org/10.1175/MWR-D-13-00136.1.

Gaspari, G., and S. E. Cohn, 1999: Construction of correlation

functions in two and three dimensions.Quart. J. Roy. Meteor.

Soc., 125, 723–757, https://doi.org/10.1002/qj.49712555417.
Geer, A. J., and P. Bauer, 2011: Observation errors in all-sky data

assimilation. Quart. J. Roy. Meteor. Soc., 137, 2024–2037,

https://doi.org/10.1002/qj.830.

——, and Coauthors, 2017: The growing impact of satellite ob-

servations sensitive to humidity, cloud and precipitation.

Quart. J. Roy. Meteor. Soc., 143, 3189–3206, https://doi.org/

10.1002/qj.3172.

——, and Coauthors, 2018: All-sky satellite data assimilation at

operational weather forecasting centres. Quart. J. Roy.

Meteor. Soc., 144, 1191–1217, https://doi.org/10.1002/qj.3202.

——, S.Migliorini, andM.Matricardi, 2019: All-sky assimilation of

infrared radiances sensitive to mid- and upper-tropospheric

moisture and cloud. Atmos. Meas. Tech., 12, 4903–4929,

https://doi.org/10.5194/amt-12-4903-2019.

Gelb, A., J. F. Kasper, R. A. Nash, C. F. Price, and A. A.

Sutherland, 1974: Applied Optimal Estimation. The MIT

Press, 374 pp.

Gu, Y., andD. S. Oliver, 2007: An iterative ensemble Kalman filter

for multiphase fluid flow data assimilation. SPE J., 12, 438–

446, https://doi.org/10.2118/108438-PA.

Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman

filter-3D variational analysis scheme. Mon. Wea. Rev., 128,

2905–2919, https://doi.org/10.1175/1520-0493(2000)128,2905:

AHEKFV.2.0.CO;2.

Honda, T., and Coauthors, 2018: Assimilating all-sky Himawari-8

satellite infrared radiances: A case of Typhoon Soudelor

(2015). Mon. Wea. Rev., 146, 213–229, https://doi.org/10.1175/

MWR-D-16-0357.1.

Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation

using an ensemble Kalman filter technique. Mon. Wea. Rev.,

126, 796–811, https://doi.org/10.1175/1520-0493(1998)126,0796:

DAUAEK.2.0.CO;2.

Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory.

Academic Press, 376 pp.

Kalman, R. E., 1960: A new approach to linear filtering and pre-

diction problems. Trans. ASME–J. Basic Eng., 82, 35–45,

https://doi.org/10.1115/1.3662552.

Kleist, D. T., and K. Ide, 2015: An OSSE-based evaluation of hy-

brid variational–ensemble data assimilation for the NCEP

GFS. Part II: 4DEnVar and hybrid variants. Mon. Wea. Rev.,

143, 452–470, https://doi.org/10.1175/MWR-D-13-00350.1.

Liu, C., and Q. Xiao, 2013: Antarctic applications with Advanced

Research WRF using real data. Mon. Wea. Rev., 141, 2721–

2739, https://doi.org/10.1175/MWR-D-12-00130.1.

——, ——, and B. Wang, 2009: An ensemble-based four-dimen-

sional variational data assimilation scheme. Part II: Observing

system simulation experiments with Advanced Research

WRF (ARW). Mon. Wea. Rev., 137, 1687–1704, https://

doi.org/10.1175/2008MWR2699.1.

Lorenc, A. C., 2003: The potential of the ensemble Kalman filter

for NWP: A comparison with 4D-Var. Quart. J. Roy. Meteor.

Soc., 129, 3183–3203, https://doi.org/10.1256/qj.02.132.

Lorenz, E. N., 1996: Predictability: A problem partly solved. Proc.

Seminar on Predictability, Reading, United Kingdom, ECMWF,

https://www.ecmwf.int/node/10829.

——, and K. A. Emanuel, 1998: Optimal sites for supplementary

weather observations: Simulation with a small model.

J. Atmos. Sci., 55, 399–414, https://doi.org/10.1175/1520-

0469(1998)055,0399:OSFSWO.2.0.CO;2.

Minamide, M., and F. Zhang, 2017: Adaptive observation error

inflation for assimilating all-sky satellite radiance. Mon.

Wea. Rev., 145, 1063–1081, https://doi.org/10.1175/MWR-

D-16-0257.1.

Morzfeld, M., and D. Hodyss, 2019: Gaussian approximations in

filters and smoothers for data assimilation. Tellus, 71A, 1–27,

https://doi.org/10.1080/16000870.2019.1600344.

Neal, R. M., 1996: Sampling from multimodal distributions us-

ing tempered transitions. Stat. Comput., 6, 353–366, https://

doi.org/10.1007/BF00143556.

Okamoto, K., A. P. McNally, and W. Bell, 2014: Progress towards

the assimilation of all-sky infrared radiances: An evaluation of

cloud effects. Quart. J. Roy. Meteor., 140, 1603–1614, https://

doi.org/10.1002/qj.2242.

Poterjoy, J., 2016: A localized particle filter for high-dimensional

nonlinear systems.Mon.Wea. Rev., 144, 59–76, https://doi.org/

10.1175/MWR-D-15-0163.1.

——, and F. Zhang, 2015: Systematic comparison of four-dimensional

data assimilation methods with and without a tangent linear

model using hybrid background error covariance: E4DVar versus

4DEnVar. Mon. Wea. Rev., 143, 1601–1621, https://doi.org/

10.1175/MWR-D-14-00224.1.

——, and J. L. Anderson, 2016: Efficient assimilation of simulated

observations in a high-dimensional geophysical system using a

localized particle filter. Mon. Wea. Rev., 144, 2007–2020,

https://doi.org/10.1175/MWR-D-15-0322.1.

——, F. Zhang, and Y. Weng, 2014: The effects of sampling errors

on the EnKF assimilation of inner-core hurricane observa-

tions.Mon.Wea. Rev., 142, 1609–1630, https://doi.org/10.1175/

MWR-D-13-00305.1.

——, R. A. Sobash, and J. L. Anderson, 2017: Convective-scale

data assimilation for the Weather Research and Forecasting

Model using the local particle filter. Mon. Wea. Rev., 145,

1897–1918, https://doi.org/10.1175/MWR-D-16-0298.1.

2388 MONTHLY WEATHER REV IEW VOLUME 149

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 06/30/21 02:21 AM UTC

https://doi.org/10.1175/2006JAS2044.1
https://doi.org/10.1029/94JC00572
https://doi.org/10.1007/s10596-018-9731-y
https://doi.org/10.1007/s10596-018-9731-y
https://doi.org/10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2
https://doi.org/10.1175/2009MWR2883.1
https://doi.org/10.1002/qj.2135
https://doi.org/10.1002/qj.2135
https://doi.org/10.1111/j.1600-0870.2010.00439.x
https://doi.org/10.1111/j.1600-0870.2010.00439.x
https://doi.org/10.1175/MWR-D-13-00136.1
https://doi.org/10.1175/MWR-D-13-00136.1
https://doi.org/10.1002/qj.49712555417
https://doi.org/10.1002/qj.830
https://doi.org/10.1002/qj.3172
https://doi.org/10.1002/qj.3172
https://doi.org/10.1002/qj.3202
https://doi.org/10.5194/amt-12-4903-2019
https://doi.org/10.2118/108438-PA
https://doi.org/10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2
https://doi.org/10.1175/MWR-D-16-0357.1
https://doi.org/10.1175/MWR-D-16-0357.1
https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
https://doi.org/10.1115/1.3662552
https://doi.org/10.1175/MWR-D-13-00350.1
https://doi.org/10.1175/MWR-D-12-00130.1
https://doi.org/10.1175/2008MWR2699.1
https://doi.org/10.1175/2008MWR2699.1
https://doi.org/10.1256/qj.02.132
https://www.ecmwf.int/node/10829
https://doi.org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2
https://doi.org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2
https://doi.org/10.1175/MWR-D-16-0257.1
https://doi.org/10.1175/MWR-D-16-0257.1
https://doi.org/10.1080/16000870.2019.1600344
https://doi.org/10.1007/BF00143556
https://doi.org/10.1007/BF00143556
https://doi.org/10.1002/qj.2242
https://doi.org/10.1002/qj.2242
https://doi.org/10.1175/MWR-D-15-0163.1
https://doi.org/10.1175/MWR-D-15-0163.1
https://doi.org/10.1175/MWR-D-14-00224.1
https://doi.org/10.1175/MWR-D-14-00224.1
https://doi.org/10.1175/MWR-D-15-0322.1
https://doi.org/10.1175/MWR-D-13-00305.1
https://doi.org/10.1175/MWR-D-13-00305.1
https://doi.org/10.1175/MWR-D-16-0298.1


——, L. J. Wicker, and M. Buehner, 2019: Progress toward the

application of a localized particle filter for numerical weather

prediction. Mon. Wea. Rev., 147, 1107–1126, https://doi.org/

10.1175/MWR-D-17-0344.1.

Potter, J., 1964: W matrix augmentation. M.I.T. Instrumentation

LaboratoryMemo. SGA,Massachusetts Institute of Technology,

Cambridge, MA, 5–64.

Potthast, R., A. Walter, and A. Rhodin, 2019: A localized adaptive

particle filter within an operational NWP framework.Mon. Wea.

Rev., 147, 345–362, https://doi.org/10.1175/MWR-D-18-0028.1.

Privé, N. C., Y. Xie, J. Woollen, S. E. Koch, R. Atlas, and R. Hood,

2013: Evaluation of the Earth Systems Research Laboratory’s

global Observing System Simulation Experiment system.

Tellus, 65A, 19011, https://doi.org/10.3402/tellusa.v65i0.19011.

Rommelse, J., 2009: Data assimilation in reservoir management.

Ph.D. thesis, Technical University of Delft.

Sakov, P., D. S. Oliver, and L. Bertino, 2012: An iterative EnKF for

strongly nonlinear systems. Mon. Wea. Rev., 140, 1988–2004,

https://doi.org/10.1175/MWR-D-11-00176.1.

Skjervheim, J.-A., G. Evensen, J. Hove, and J. G. Vabø, 2011: An

ensemble smoother for assisted history matching. SPE

Reservoir Simulation Symp., TheWoodlands, TX, SPE, SPE-

141929-MS, https://doi.org/10.2118/141929-MS.

Snyder, C., T. Bengtsson, P. Bickel, and J.Anderson, 2008:Obstacles

to high-dimensional particle filtering. Mon. Wea. Rev., 136,

4629–4640, https://doi.org/10.1175/2008MWR2529.1.

Stengel, M., P. Unden, M. Lindskog, P. Dahlgren, N. Gustafsson,

and R. Bennartz, 2009: Assimilation of SEVIRI infrared ra-

diances with HIRLAM 4D-Var. Quart. J. Roy. Meteor. Soc.,

135, 2100–2109, https://doi.org/10.1002/qj.501.
Thepáut, J.-N., andP.Courtier, 1991: Four-dimensional variational data

assimilation using the adjoint of a multilevel primitive-equation

model. Quart. J. Roy. Meteor. Soc., 117, 1225–1254, https://

doi.org/10.1002/qj.49711750206.

van Leeuwen, P. J., and G. Evensen, 1996: Data assimilation and

inverse methods in terms of a probabilistic formulation.

Mon. Wea. Rev., 124, 2898–2913, https://doi.org/10.1175/

1520-0493(1996)124,2898:DAAIMI.2.0.CO;2.

Vukicevic, T., T. Greenwald, M. Zupanski, D. Zupanski,

T. V. Haar, and A. S. Jones, 2004: Mesoscale cloud state

estimation from visible and infrared satellite radiances.

Mon. Wea. Rev., 132, 3066–3077, https://doi.org/10.1175/
MWR2837.1.

Whitaker, J., and G. Compo, 2002: An ensemble Kalman smoother

for reanalysis.Proc. Symp. onObservations, DataAssimilation

and Probabilistic Prediction, Orlando, FL, Amer. Meteor.

Soc., 144–147.

——, and T. M. Hamill, 2002: Ensemble data assimilation without

perturbed observations. Mon. Wea. Rev., 130, 1913–1924,

https://doi.org/10.1175/1520-0493(2002)130,1913:EDAWPO.
2.0.CO;2.

Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate

and observation availability on convective-scale data assimi-

lation with an ensemble Kalman filter. Mon. Wea. Rev., 132,

1238–1253, https://doi.org/10.1175/1520-0493(2004)132,1238:

IOIEAO.2.0.CO;2.

——, M. Zhang, and J. A. Hansen, 2009: Coupling ensemble

Kalman filter with four-dimensional variational data assimi-

lation. Adv. Atmos. Sci., 26, 1–8, https://doi.org/10.1007/

s00376-009-0001-8.

Zhu, Y., and Coauthors, 2016: All-sky microwave radiance assim-

ilation in NCEP’s GSI analysis system. Mon. Wea. Rev., 144,

4709–4735, https://doi.org/10.1175/MWR-D-15-0445.1.

Zou, X., F. Weng, B. Zhang, L. Lin, Z. Qin, and V. Tallapragada,

2013: Impacts of assimilation of ATMS data in HWRF on

track and intensity forecasts of 2012 four landfall hurricanes.

J. Geophys. Res., 118, 11558–11576, https://doi.org/10.1002/

2013JD020405.

JULY 2021 KUROSAWA AND POTER JOY 2389

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 06/30/21 02:21 AM UTC

https://doi.org/10.1175/MWR-D-17-0344.1
https://doi.org/10.1175/MWR-D-17-0344.1
https://doi.org/10.1175/MWR-D-18-0028.1
https://doi.org/10.3402/tellusa.v65i0.19011
https://doi.org/10.1175/MWR-D-11-00176.1
https://doi.org/10.2118/141929-MS
https://doi.org/10.1175/2008MWR2529.1
https://doi.org/10.1002/qj.501
https://doi.org/10.1002/qj.49711750206
https://doi.org/10.1002/qj.49711750206
https://doi.org/10.1175/1520-0493(1996)124<2898:DAAIMI>2.0.CO;2
https://doi.org/10.1175/1520-0493(1996)124<2898:DAAIMI>2.0.CO;2
https://doi.org/10.1175/MWR2837.1
https://doi.org/10.1175/MWR2837.1
https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
https://doi.org/10.1007/s00376-009-0001-8
https://doi.org/10.1007/s00376-009-0001-8
https://doi.org/10.1175/MWR-D-15-0445.1
https://doi.org/10.1002/2013JD020405
https://doi.org/10.1002/2013JD020405

