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ABSTRACT: Ensemble data assimilation in modern regional weather prediction models often

faces challenges in managing sampling errors due to small ensemble size and model errors.

Increasing the ensemble size is not often feasible because of the computational resources needed for

implementing models with large, high-resolution domains. The current study introduces a strategy

for mitigating issues of sampling error in operational data assimilation systems by supplementing

ensemble-estimated error covariance needed for data assimilation with perturbations sourced from a

global model. This approach resembles hybrid data assimilation methods that use a weighted sum of

two background error covariances to mitigate sampling deficiency from ensembles. Specifically, we

enhance the NOAA Hurricane Analysis and Forecast System (HAFS) by incorporating an ensemble

Kalman filter (EnKF) with augmented perturbations that utilizes flow-dependent perturbations

from the Global Data Assimilation System (GDAS) to reduce sampling errors. Additionally, we

implement a localized particle filter (LPF) with augmented perturbations, which is not part of the

original HAFS data assimilation system, and conduct a comparative analysis of the EnKF with

augmented perturbations, the LPF with augmented perturbations, and a hybrid filter that combines

the two methods. Experiments that rely on augmented perturbations from GDAS for updating 40-

member ensembles are found to produce substantial improvements over benchmark experiments.

The new approaches are evaluated over multi-week cycling data assimilation experiments focusing

on Hurricanes Laura and Marco from August 2020.

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

2



1. Introduction26

Sampling errors stemming from ensemble estimates of forecast uncertainty continue to be a sub-27

stantial challenge for numerical weather prediction (NWP). The computational resources needed28

for handling large-scale and high-resolution datasets place large constraints on the ensemble af-29

forded for operational prediction. As such, many strategies have been proposed for reducing bias30

in ensemble statistics caused by sampling errors and assumptions used to form data assimilation31

algorithms. Heuristic covariance localization and inflation strategies are frequently used methods32

and have also become widely accepted for large geophysical models (Anderson 2001; Houtekamer33

and Mitchell 2001; Hamill et al. 2001; Lorenc 2003; Bishop and Hodyss 2011).34

One strategy, which is common for operational implementations of variational data assimilation,35

is the use of a linear combination of flow-dependent (from ensembles) and static (from clima-36

tology) background error covariance during data assimilation (Hamill and Snyder 2000; Lorenc37

2003; Buehner 2005). The flow-dependent covariances from ensemble-based methods can de-38

scribe physically consistent, time-variant errors that exhibit anisotropic spatial correlations, which39

are not easily parameterized from climatology. At the same time, the blending of ensemble and40

climatological statistics helps reduce sampling errors caused by the small ensemble size. This ap-41

proach, referred to as hybrid methods, combines variational and ensemble approaches to leverage42

the advantages of both techniques. Various previous studies have indicated that combining varia-43

tional and ensemble approaches provides better performance than either method alone; therefore,44

most major environmental prediction centers use hybrid methods (NCEP; Bannister 2017).45

Hybrid data assimilation has been studied extensively over the past decades, and various al-46

ternative approaches have been proposed to improve its performance. One such approach is to47

supplement the dynamic ensemble members from the Ensemble Kalman filter (EnKF; Evensen48

1994; Houtekamer and Mitchell 1998; Bishop et al. 2001; Anderson 2001; Whitaker and Hamill49

2002) with additional ensemble members derived from climatological perturbations (Lei et al.50

2021). This strategy, called the “integrated hybrid EnKF” method, utilizes climatological per-51

turbations to approximate the static forecast error covariance, which allows for updating both the52

ensemble mean and perturbations with a hybrid error covariance within the EnKF framework.53

In this study, our first objective is to assess a conceptually simple but e”ective strategy for reducing54

sampling bias in ensemble statistics derived from small regional ensembles, using hurricanes as55
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the target application. As such, we extend the experimental framework in Lei et al. (2021) and56

employ a similar approach for treating sampling error that is motivated by the use of a hybrid57

error covariance matrix. For this strategy, flow-dependent error statistics derived from short-58

range forecasts are augmented by flow-dependent ensemble perturbations generated from a global59

model. This strategy is conceptually similar to past studies that introduce a hybrid error covariance60

in EnKFs by blending an ensemble error covariance with a low-rank, sample representation of61

a climatological error covariance matrix. However, our proposed strategy uses flow-dependent62

perturbations instead of climatological perturbations, which has the potential to provide more63

accurate assimilation results by reducing sampling error in pure ensemble estimates. Specifically,64

to improve the ensemble forecasts from the NOAA Hurricane Analysis and Forecast System65

(HAFS), we add ensemble perturbations from the Global Data Assimilation System (GDAS) and66

then estimate the Kalman gain in the EnKF update step with the augmented ensemble members.67

Furthermore, ongoing research seeks to apply particle filters (PFs) for state estimation, which68

are inherently very sensitive to sampling errors (Snyder et al. 2008). Similar to EnKFs, current69

approaches for mitigating sampling error involve the use of localization and inflation (Poterjoy 2016;70

Penny and Miyoshi 2016; Potthast et al. 2019; Poterjoy et al. 2019). Similar filter methodologies71

have recently been extended with the advent of specific techniques, including the use of iterative72

strategies (Hu and van Leeuwen 2021; Poterjoy 2022b) and the incorporation of Gaussian mixtures73

(Kotsuki et al. 2022; Rojahn et al. 2023). Combining localized particle filters (LPFs) with EnKFs,74

which we will denote as “blending PF-EnKF”, is another viable approach, as it also provides a75

bridge between PFs and robust Gaussian-based techniques like EnKFs (Frei and Künsch 2013;76

Robert et al. 2018; Grooms and Robinson 2021; Poterjoy 2022a; Kurosawa and Poterjoy 2021,77

2023). This mixing methodology has already demonstrated promising results in idealized and real78

applications, particularly in high-dimensional data assimilation problems that are characterized by79

non-Gaussian errors, where the sole use of either PF or EnKF may have limitations.80

In summary, the present study uses an experimental hurricane prediction system to examine new81

data assimilation strategies for regional weather models. The first component of this research is to82

explore the utility of augmented perturbations from a global model to reduce sampling deficiency83

in high-resolution ensembles produced within a limited-area model. The second component im-84

plements PFs with augmented perturbations, not originally part of the HAFS system, and compares85
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its performance with the EnKF with augmented perturbations and a hybrid filter combining both86

methods.87

The manuscript is organized in the following manner. Section 2 presents the data assimilation88

methods used in this study. Section 3 describes the experimental setup, including the model, and89

observation data used in the experiments. In Section 4, we present and discuss the results of90

the experiments. In the last section, we summarize our findings and suggest avenues for future91

research.92

2. Background: data assimilation methods93

In this section, we provide a mathematical description of each method and introduce the modeling94

system used for numerical experiments. Notational conventions are as follows: vectors are indicated95

by lowercase boldface font, matrices are indicated by uppercase boldface font, and scalars and96

nonlinear operators are indicated by italic font. The background model forecast (or prior) states97

are represented by an 𝐿𝑀-dimensional vector x
𝑁 , while the observations are represented by a 𝐿𝑂-98

dimensional vector y. The background (or prior) error covariance matrix is represented by the99

𝐿𝑀 →𝐿𝑀 dimensional P, and the observation errors are assumed to have zero mean and covariance100

given by the 𝐿𝑂 →𝐿𝑂 dimensional matrix R. The superscripts 𝑁 and 𝑃 correspond to forecast and101

analysis, respectively.102

a. EnKF103

The EnKF is a computationally e!cient method that is based on the Kalman filter (Kalman104

1960) and is designed for moderately nonlinear dynamical systems. Unlike the extended Kalman105

filter (McElhoe 1966), which is a modification of the original Kalman filter that utilizes the tangent106

linear model operator to handle nonlinearities in the forecast model or measurement operators,107

the EnKF does not require the tangent linear model operator. Instead, the EnKF represents the108

error statistics of P using a statistical ensemble of model states. This approach bypasses the need109

for linearizing the forecast model, as in the extended Kalman filter. Consequently, the Kalman110

gain matrix in the EnKF is derived from the ensemble, facilitating its application to systems with111

moderate nonlinearity without the explicit use of a tangent linear model. The Kalman gain matrix112
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is described as follows:113

K = E
𝑁

D
𝑁↑

(
D

𝑁

D
𝑁↑ +R

)↓1
, (1)

where E
𝑁 consists of model-space forecast ensemble perturbations and D

𝑁 consists of observation-114

space forecast ensemble perturbations, with both matrices normalized by 1↔
𝐿𝑄↓1

. For the ensemble115

formulation, the covariance matrix P can be defined as116

P = EE
T
, (2)

E = 1↔
𝐿𝐿↓1 [𝑅x

(1) | · · · | 𝑅x
(𝐿𝐿)], (3)

where 𝑅x
(𝑆) is considered as a perturbation around x

(𝑆) , which is the 𝑆𝑇𝑈 member from an ensemble117

of 𝐿𝑄 model states.118

For this study, all algorithms requiring an EnKF to update ensemble members use the serial119

ensemble square-root filter (serial EnSRF; Whitaker and Hamill 2002). In general, this method120

provides a deterministic update of the ensemble mean and perturbations about the ensemble mean121

separately in a manner that satisfies the analysis mean and error covariance given by Kalman filter122

theory. To avoid large matrix inversions, observations are assumed to have independent errors123

and assimilated serially. When assimilating a single observation through this formulation, the124

measurement operators and K reduce to vectors of length 𝐿𝑀 , and R is a scalar. Therefore, for an125

individual observation, the computation can be performed even if the measurement operator is fully126

nonlinear, which is done by applying this operator to each ensemble member before calculating127

sample statistics.128

b. The local PF and mixed filter129

In this section, we briefly outline important properties of the iterative local PF proposed by130

Poterjoy (2022b). This study takes advantage of the unique features of this filter, namely regular-131

ization, tempering, and mixing strategies. For those interested in a more detailed description of132

the methodology, we refer to Poterjoy (2022b) and Kurosawa and Poterjoy (2023).133

The local PF assimilates observations with independent errors in a sequential manner and134

combines sampled particles and prior particles for each observation to introduce localization. The135
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posterior particles can be adjusted in a way that is consistent with bootstrap sampling by updating136

the particles after each observation space sampling step. The 𝑉𝑇𝑈 updated particle x
𝑉

𝑂
is expressed as137

a linear combination of the re-sampled particle x
𝑊𝑀 , and the prior particle x

𝑉, with x𝑂 representing138

the localized posterior mean accumulating the full weight of all observations up to 𝑂:139

x
𝑉

𝑂
= x𝑂 + r1 ↗ (x𝑊𝑀 ↓x𝑂) + r2 ↗ (x𝑉↓x𝑂), (4)

where 𝑊𝑉 is the index of each sampled particle. Here, the posterior mean is the best estimate of the140

state after incorporating observations, while the posterior variance reflects the uncertainty of this141

estimate. These are crucial for ensuring the particle updates align with the statistical properties of142

the posterior distribution. The coe!cients, r1 and r2, are designed to maintain the posterior mean143

and variance, improving the accuracy and stability of the filter.144

The iterative PF introduced by Poterjoy (2022b) allows for a “blended” PF-EnKF approach145

through the use of a mixing parameter, which determines when to switch from a PF to an alternative146

data assimilation technique that may be more appropriate for specific error distributions. Past147

research suggests that this mixing approach, especially when the blending coe!cient is optimally148

tuned, can mitigate some of the sampling deficiencies associated with PFs for applications where the149

posterior distribution more closely resembles a Gaussian than the prior distribution (Kurosawa and150

Poterjoy 2023; McCurry et al. 2023). Although the mixing parameter can be adjusted independently151

for each grid point or variable, it is fixed at 0.5 in the current study, based on tests where the152

parameter was varied from 0 to 1 in increments of 0.25, with 0.5 yielding the best performance.153

c. An augmented ensemble data assimilation scheme154

The current study proposes a data assimilation system that uses additional ensemble forecast155

perturbations to reduce sampling deficiency in uncertainty estimates. This approach is largely156

inspired by the integrated hybrid ensemble Kalman filter with augmented perturbations (IHCEnKF;157

Lei et al. 2021), but uses samples generated from a global weather prediction system, rather than158

from a climatological error covariance. The IHCEnKF is a hybrid data assimilation method that159

combines the benefits of both ensemble and variational methods. It updates both the mean and160

perturbations in the EnKF framework using a hybrid background error covariance. This method can161

be implemented without making changes to existing codes, but requires larger ensembles compared162
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to approaches that combine ensemble-based covariances with static climatological covariances,163

leading to increased computational cost. The scheme proposed in the current study extends the164

perturbations used to characterize prior uncertainty using flow-dependent data, which is more165

specific to the system being modeled. Flow-dependent data reflects the current state of the system,166

whereas climate ensemble data is based on balance constraints and historical weather patterns,167

which may not accurately reflect the current state of the system—especially for extreme events,168

such as tropical cyclones.169

The current operational HAFS variational data assimilation already uses ensemble perturbations170

from GDAS to prescribe a flow-dependent background error covariance. Therefore, much of171

the computational expense for this step already exists in the operational system. This study’s172

novelty is the introduction of GDAS perturbations in an update step, which can be used to cycle a173

high-resolution ensemble forward in time. In doing so, the GDAS perturbations are used to treat174

sampling deficiency during the update of ensemble perturbations for future implementations of175

HAFS that may use a self-cycled ensemble.176

The dynamics governing hurricane track and intensity span a large number of scales, which177

require large domains and a convective-permitting resolution. These limitations restrict the en-178

semble size a”ordable for HAFS—which in this study, uses 40 members. Data assimilation steps179

performed in a prototype “basin-wide” version of HAFS use a background error covariance matrix180

P
𝑁

𝑋𝑌𝑍𝑎
, which is solely derived from the 40-member HAFS ensemble. In the newly proposed181

system, P
𝑁 is replaced with a mixed covariance matrix P

𝑁

𝑏𝑐𝑀
, which takes into account both the182

HAFS and GDAS ensembles to reduce sampling error with a small HAFS ensemble. P
𝑁

𝑏𝑐𝑀
is a183

weighted average of the perturbations from both ensembles:184

P
𝑁

𝑏𝑐𝑀
=

𝐿HAFS
𝐿HAFS +𝐿GDAS

P
𝑁

HAFS +
𝐿GDAS

𝐿HAFS +𝐿GDAS
P

𝑁

GDAS, (5)

where 𝐿 and the superscript 𝑁 indicate the ensemble size and forecast, respectively.185

This approach can be extended to PFs by introducing 80 additional particles that are generated by186

adding GDAS perturbations to the HAFS background mean. It is important to note that regardless187

of whether the augmented P
𝑁 is used, the prior ensemble mean at each data assimilation step is188

always the HAFS ensemble mean, which is crucial to maintain for regional models that operate at189

high resolution (Schwartz et al. 2022). Each ensemble perturbation from GDAS is produced by190
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removing the original mean and centering the perturbations on the prior ensemble mean from HAFS191

at each analysis time. We also note that this approach ensures a balanced contribution from both192

ensemble systems, but may not be optimal for storm-scale data assimilation. GDAS perturbations193

are derived from a relatively low-resolution global model, and may not adequately represent storm-194

scale characteristics. If GDAS perturbations are given high weight, the high-resolution information195

provided by the HAFS ensemble may be unintentionally diluted, and the constructed background196

error covariance may limit its ability to capture local storm characteristics. Since the current197

study naively weights each set of perturbations based on the respective ensemble size, exploring198

alternative weighting strategies could potentially yield better results. Further information on HAFS199

and GDAS is provided in section 3 a.200

3. Configuration for numerical experiments201

a. Models and experimental design202

The GDAS uses a hybrid 4D-ensemble-Var (4DEnVar; Liu et al. 2008) configuration with 80203

ensemble members to initialize the Global Forecast System (GFS) model. The GFS is used for204

medium-term numerical weather predictions in the US and it is built with the Geophysical Fluid205

Dynamics Laboratory (GFDL) Finite-Volume Cubed-Sphere (FV3) Dynamical Core and the Grid-206

Point Statistical Interpolation (GSI) data assimilation system. HAFS is also based on the FV3 and207

aims to provide operational analysis and forecasting with reliable and skillful guidance on tropical208

cyclone (TC) track and intensity, storm size, and weather hazards associated with TCs. Past209

configurations of HAFS have included a uniform global model with a high-resolution nest and a210

stand-alone high-resolution regional model (Dong et al. 2020; Hazelton et al. 2021; Gopalakrishnan211

et al. 2021). The HAFS modeling system can be initialized in two ways: (1) a “cold start,” which212

is an initialization from GDAS, or (2) a warm start of the current forecast cycle, which sources213

data from its preceding forecast cycle to be used as a background, then performs its own data214

assimilation. The current operational HAFS system incorporates a 6-hourly four-dimensional215

ensemble variational (4DEnVar) method that employs the GDAS ensemble, relying exclusively on216

the background error covariance obtained from the 80-member GDAS without incorporating any217

static error covariance. This configuration only performs data assimilation over a high-resolution218

nest that covers TC vortices. Meanwhile, a prototype HAFS data assimilation system adopted for219
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this research uses three-dimensional ensemble variational data assimilation (3DEnVar), with an220

ensemble updated using an EnKF, which derives the Kalman gain solely from the HAFS ensemble.221

Unlike the operational data assimilation system, the version used for this study performs data222

assimilation over a single fixed domain, which encompasses storms and their environments. In the223

current study, as highlighted in the previous subsection, we compare this configuration to one that224

uses both HAFS and GDAS ensembles to mitigate sampling errors inherent to the smaller HAFS225

ensemble.226

The current study utilizes a fixed regional model configuration, with a model domain consisting227

of a single grid of 1440 → 1080 horizontal grid cells with a 6-km horizontal grid spacing, 81228

vertical levels, and employing the FV3 dynamical core. The physics suite used in our configuration229

of HAFS resembles the GFS version 16 physics configuration but with modified boundary layer230

physics that is specific to TCs. The atmospheric model is also coupled with the Hybrid Coordinate231

Ocean Model (Chassignet et al. 2007, 2009). Identical to past operational configurations of the232

NOAA Hurricane Weather Research and Forecasting (HWRF) model, HAFS assimilates both233

conventional and satellite observations, in addition to hurricane-specific measurements collected234

from aircraft reconnaissance flights (Tong et al. 2018).235

We conduct experiments using interpolated boundary conditions and initial conditions (for the236

first cycle) from the 2020 operational global FV3-based GFS, which has a horizontal spacing of237

approximately 13 km. Our configuration of HAFS uses a 6-km horizontal grid spacing for both238

deterministic and ensemble states. Each experiment covers a period of three weeks, from 00 UTC239

11 August 2020 to 1800 UTC 29 August 2020, encompassing the entire life cycle of two landfalling240

hurricanes, AL13 (Laura) and AL14 (Marco), in the Gulf of Mexico (Fig. 1). We consider the first241

week as a spin-up period and use the results from the remaining weeks for validation.242

b. Data assimilation configuration245

The current study assimilates observations every 6-h to update a 40-member HAFS ensemble.246

Using results from experiments performed with conventional EnKF as a benchmark, or “control”247

(Fig. 2a), this study tests the local PF, the blending PF-EnKF, and their application with the248

augmented perturbations (Fig. 2b). Experiments that use augmented perturbations are denoted by249

a ”G” at the end of their name; i.e.,”EnKF-G,” ”PF-G,” and ”PF-EnKF-G.”250
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F!”. 1. HAFS domain with black bold lines outlining the boundaries, and the paths of hurricanes Laura (red)

and Marco (blue). The black dashed lines indicate the area used for calculating the ERA5 scores in Fig. 7.

243

244

We implement augmenting perturbations from 80-member GDAS to improve sampling deficiency251

in 40-member HAFS ensemble data assimilation, i.e., 𝐿HAFS + 𝐿GDAS = 120. The ensemble252

perturbations from 6-h GDAS forecasts are introduced into the assimilation step by replacing the253

ensemble mean of the GDAS ensemble with the mean of the HAFS ensemble. This step occurs254

before data assimilation each analysis time. This design choice also permits the use of the local255

PF with augmented perturbations, which now uses an additional 80 members to estimate prior256

densities.257

Localization is applied to reduce sampling noise introduced from ensemble error approximations.258

Horizontal and vertical localization length scales are set to 𝑑𝑈 = 500 km and 𝑑𝑒 = 0.5 natural log259

pressure, respectively. This study uses relaxation to prior spread (RTPS; Whitaker and Hamill260

2012) to further help maintain ensemble spread for experiments that use the EnKF. The relaxation261

parameter for all variables is set to 𝑓 = 0.95, which was chosen based on tuning carried out through262
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shorter experiments not shown in this paper. In Sec. 4b-d, the blending PF-EnKF uses a mixing263

coe!cient (𝑔) of 0.5, implying an equal utilization of PF and EnKF updates.264

F!”. 2. Flowcharts of two experimental methods: (a) the conventional HAFS ensemble data assimilation

experiment cycle and (b) the experiment cycle using the augmented flow-dependent perturbations. In (b),

the forecast error covariance matrix P
𝑁 is replaced by a matrix of comprised of weighted HAFS and GDAS

perturbations. A new step shown in green represents the re-centering of the ensemble mean using additional

80-member perturbations, and the purple process represents the ensemble analysis of GDAS, which is only used

for data assimilation.

265

266

267

268

269

270

4. Experimental results from cycling experiments271

a. Assessment of the augmented perturbations with EnKF272

To assess the e”ectiveness of the proposed augmented ensemble data assimilation system, we273

conduct cycling experiments using EnKF with and without the augmented perturbations, denoted274

as EnKF-G and EnKF, respectively. For comparison, we examine prior ensemble spread in our275

cycled data assimilation experiments with values computed from the first 40 GDAS ensemble276
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members. Therefore, the objective is to show how the ensemble spread of EnKF with augmented277

perturbations in previous data assimilation steps manifests as a change in prior spread over multiple278

weeks of data assimilation.279

Figure 3 presents a comparison of the prior ensemble spread of temperature, u-wind, and specific280

humidity at 850 hPa for EnKF, EnKF-G, and GDAS averaged from 00 UTC on August 18 to 18281

UTC on August 29, 2020. It is evident that GDAS exhibits the largest ensemble spread among the282

three, which is not surprising given that GDAS uses a larger ensemble size and stochastic physics283

to induce spread in the ensemble—with the latter not being a feature of the HAFS version adopted284

for this research. The EnKF experiment shows the smallest spread. The EnKF-G experiment285

falls between the two, indicating that the augmented perturbations lead to a moderate increase in286

ensemble spread.287

To further investigate the impact of the augmented perturbations on the vertical structure of288

ensemble spread, we calculate the prior ensemble spread profiles of temperature, u-wind, and289

specific humidity from 0 hPa to 1000 hPa for EnKF, EnKF-G, and GDAS (Fig. 4). The results290

show that GDAS exhibits the largest ensemble spread throughout the entire vertical domain, while291

the EnKF experiment exhibits the smallest spread. The spread profiles for EnKF-G are consistently292

larger than those for EnKF across the vertical domain, which we will note in future sections to be293

crucial to obtaining more skillful analyses. Therefore, the results of our cycling experiments show294

that the proposed augmented ensemble data assimilation system increases the ensemble spread in a295

manner that is expected given our choices for weighting HAFS and GDAS perturbations in Kalman296

gain calculations, and the lack of stochastic physics in the HAFS ensemble.297

b. Error verification in the observation space303

To further examine the impact of using augmented perturbations to supplement prior uncertainty304

estimation during data assimilation (Figs. 3 and 4), we assess observation-space errors from our305

control EnKF experiment with those from EnKF-G, PF-G, and PF-EnKF-G. Figure 5 shows the306

vertical profiles of prior root-mean-square di”erences (RMSDs) and bias using all temperature and307

wind measurements assimilated between 1000 to 50 hPa, averaged from 00 UTC on August 18 to 18308

UTC on August 29, 2020. Panels (a) and (b) indicate that EnKF has the largest RMSD, especially309

in the range from 600 hPa to 200 hPa, where many upper-air measurements (e.g., satellite-derived310
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F!”. 3. Average prior ensemble spread of temperature, u-wind, and specific humidity at 850 hPa for (a-c)

EnKF, (d-e) EnKF-G, and (g-i) GFS, averaged from 00 UTC on August 18 to 18 UTC on August 29, 2020.

298

299

atmospheric motion vectors and in situ data from aircraft) exist. Nevertheless, the benefits are311

much smaller in the lower troposphere, where HAFS exhibits a large increase in bias near the312

surface. Panels (c) and (d), representing wind RMSD and bias respectively, show that EnKF and313

PF-G display higher errors, with both methods indicating higher RMSDs and biases compared314

to the other techniques. In contrast, EnKF-G and PF-EnKF-G show improved scores, suggesting315

these methods are more e”ective in reducing both random errors and biases.316

Figure 6 presents a time series of domain-average prior RMSDs and “total error” in observation317

space, calculated from prior members at each 6-hour data assimilation cycle. Total error is defined318

as the square root of the sum of the observation error variance and ensemble variance of the319

simulated observations (Houtekamer and Mitchell 2005). Ideally, total error should be equal to320

RMSDs, as it quantifies the expected standard deviation of the ensemble mean departures from321

noisy observations. First, focusing on the coe!cient of total error to RMSDs, it is clear that the total322
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F!”. 4. Average prior ensemble spread profile of (a) temperature, (b) u-wind, and (c) specific humidity for

EnKF (black), EnKF-G (red), and GFS (blue), respectively. These values were calculated throughout the cycle

experiments conducted from 00 UTC on August 18 to 18 UTC on August 29, 2020.

300

301

302

error is underestimated for all variables except wind. In contrast, for wind, the total error is slightly323

overestimated in relation to the RMSDs, which we speculate is caused partly by an over-prescribed324

observation uncertainty for some of the verifying measurements. Further tuning the methods325

used to control ensemble spread, such as inflation and relaxation, could potentially mitigate this326

problem. Nevertheless, our attempts to increase spread without increasing RMSDs resulted in the327

current configuration, which also resembles specifications used in past studies for HWRF (Poterjoy328

et al. 2021). Furthermore, comparing RMSDs and total error across experiments shows that the329

augmented experiments generally have reduced RMSDs and a more appropriate representation330

of uncertainty for prognostic variables–with respect to the benchmark EnKF experiment. This331
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verification confirms that extending ensemble perturbations to include samples from GDAS proves332

e”ective at reducing sampling deficiency in HAFS.333

c. Domain-averaged error verification341

This section compares prediction accuracy for the entire domain using the ECMWF Reanalysis342

v5 (ERA5) data, which incorporates 4DVar data assimilation and comprehensive observational343

data sets, including all-sky radiances (Hersbach et al. 2020). For this comparison, we look at344

temperature, wind, specific humidity, and absolute vorticity from August 18 to August 29, 2020.345

To mitigate the impact of boundary conditions, the domain over which the scores are calculated346

has been deliberately restricted to a smaller area, well within the interior of the larger domain,347

ensuring that the calculations reflect the dynamics less influenced by the boundaries. This area is348

represented by the black dashed lines in Fig. 1.349

Figure 7 shows the average RMSDs, ensemble spread, and bias relative to ERA5 of the variables,350

with the forecast lead time on the horizontal axis from hour 0 to hour 102. An examination351

of RMSDs for temperature, winds, and specific humidity at short lead times (Fig. 7a–c) shows352

that PF-G has larger errors compared to the other methods that use augmented perturbations.353

This finding is not surprising, given that Kalman filter-based data assimilation techniques aim to354

find an analysis that minimizes mean squared errors, which favors a verification of RMSD near355

analysis times. However, as the forecast time increases, this di”erence diminishes, and the PF-G356

obtains comparable skill to the other experiments that use augmented perturbations. Likewise, the357

ensemble spread for PF-G is consistently the largest among the tested methods, though we note358

that all methods produce under-dispersed forecasts. As discussed in Poterjoy (2022a), posterior359

members produced by the LPF tend to undergo smaller geostrophic adjustment following initiation,360

which results in a more steady increase in ensemble spread at short lead times compared to EnKFs.361

Furthermore, each method that uses a full or partial EnKF update (with augmented perturbations)362

shows little di”erence in RMSD or ensemble spread across variables. Examining the bias in the363

forecasts, we find that the EnKF exhibits the largest bias overall. PF-G follows closely behind, even364

surpassing the EnKF bias in wind speed forecasts at lead times shorter than 48 hours. However,365

as the forecast lead time increases, the bias in PF-G becomes comparable to other methods using366

augmented perturbations (EnKF-G and EnKF-PF-G).367
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F!”. 5. Vertical profiles of RMSD and bias for temperature and wind in the observation space using di”erent

data assimilation methods: (a) temperature RMSD, (b) temperature bias, (c) wind RMSD, and (d) wind bias,

evaluated with EnKF (black), EnKF-G (red), PF-G (blue), and PF-EnKF-G (green). These values were calculated

throughout the cycle experiments conducted from 00 UTC on August 18 to 18 UTC on August 29, 2020.
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F!”. 6. Time series of domain-average prior RMSDs (solid lines) and total error (dotted lines) in the

observation space of (a) pressure, (b) temperature, (c) wind, and (d) specific humidity, for EnKF (black), EnKF-

G (red), PF-G (blue), and PF-EnKF-G (green).

338

339

340

We note that PF-G persistently produces the smallest errors in vorticity at all lead times. The368

markedly larger RMSEs in EnKF and mixed filter experiments at early lead times come from369

spuriously large wind gradients in EnKF analyses, which is consistent with coarse-resolution370

regional modeling experiments performed by Poterjoy (2022a). Likewise, these experiments371

result in a notable drop in error over the first 12 h as the model adjusts to wind analyses that372

are not supported by basic horizontal momentum balance. These e”ects are more notable for373

ensemble spread, which continues to drop over the first 48 h. Because EnKF adjustments to374

ensemble perturbations are also modified by posterior inflation, we suspect that this behavior is375

partly induced by the chosen inflation mechanism, namely, RTPS. Whitaker and Hamill (2012)376

note that RTPS tends to induce spread over a larger wave spectrum than alternative relaxation-377

based techniques—but at the expense of maintaining dynamical balance. As a result, many of the378
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non-physical impacts of data assimilation on vorticity are removed during the model’s integration379

leading to a decrease in ensemble spread at early forecast times.380

In terms of bias, we observe an oscillating pattern. This behavior is likely due to the sensitivity381

of vorticity to spatial gradients in wind speed, making it susceptible to model instabilities and382

adjustments. Specifically, the model’s resolution can contribute to this behavior. If the resolution383

is too coarse to accurately capture fine-scale variations in wind speed, it can introduce instabilities384

in the vorticity forecast, potentially causing the bias to oscillate as the forecast lead time increases.385

Lastly, focusing further on the pure EnKF experiment that does not use the augmented approach,386

it exhibits the smallest ensemble spread and the largest RMSD values on average for all variables387

in Fig. 7. This suggests that the strategy aimed at addressing the sampling deficiency in en-388

semble statistics has the potential to enhance the e”ectiveness of various regional ensemble data389

assimilation systems.390

d. Tropical Cyclone Forecast Verification395

In this section, we verify model forecasts based on TC-specific metrics that are available from396

the National Hurricane Center (NHC) “best track” database, namely track, maximum 10-m surface397

winds, and minimum sea level pressure (MSLP). These comparisons examine 10-member ensemble398

forecasts that are initialized during times when AL13 (Laura) and AL14 (Marco) were of a tropical399

storm or greater intensity.400

Figure 8 presents RMSDs and ensemble spread for the track and intensities of wind speed and401

MSLP throughout the experiments for AL13 and AL14. Experiments with the augmented pertur-402

bations consistently provide smaller RMSDs relative to pure EnKF, suggesting that the proposed403

approach is e”ective for both EnKFs and PFs. While PF-G is less skillful than EnKF-G and404

PF-EnKF-G, its performance is more sensitive to challenges related to the model’s representation405

of rapid intensification and the use of the 6-km grid spacing, which is relatively coarse. By suc-406

cessfully integrating the advantages of EnKF-G, PF-EnKF-G achieves improved results over PF-G407

and qualitative benefits over EnKF-G that are described below. Consistent with the domain-wide408

verification, the EnKF without augmented perturbations produced the smallest spread while PF-G409

produced the largest–with the other two experiments falling between.410
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F!”. 7. Average RMSDs relative to ERA5 of (a) temperature, (b) u-wind, (c) specific humidity, and (d)

absolute vorticity for EnKF (black), EnKF-G (red), PF-G (blue), and PF-EnKF-G (green), averaged from 00

UTC on August 18 to 18 UTC on August 29, 2020. The solid lines represent RMSD, and the dashed lines

represent ensemble spread.
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While track and error verifications highlight the overall performance of each method, a closer411

examination of AL13 and AL14 reveals further insight into the strengths and weaknesses of each412

data assimilation approach. First, we examine the case of Laura (Fig. 9). Ensemble forecasts413

generated during the control EnKF experiment predict the track of the TC accurately over most of414

the storm’s life cycle but struggle in the early cycles to capture Laura’s initial intensification. On the415

other hand, EnKF-G, which uses augmented perturbations, improves the accuracy of storm track416

and intensity during the early cycles and persistently produces an envelope of forecast solutions that417

capture the observed TC characteristics. This experiment, however, tends to produce spuriously418

large increases in winds during analyses, which rapidly decay in the first 6 h of forecasts; see sharp419

decrease in max winds in Fig. 8b. The spuriously large analysis winds are directly related to the420
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large domain-wide vorticity errors highlighted in Fig. 7d, which tend to be restricted to smaller421

scales.422

The PF-G experiment shows similar improvements over the control, primarily in early track423

forecasts for Laura, but tends to be less skillful than EnKF-G when the data assimilation needs to424

correct for major intensity errors (e.g., during Laura’s rapid intensification period). This finding425

is a re-occurring challenge for PF-G in our experiments and is rather expected given that the LPF426

cannot easily shift members outside the span of the prior in the same manner as the EnKF. The issue427

is partially related to our use of a 6-km grid spacing for FV3, which leads to a low-intensity bias in428

our experiments. PF-EnKF-G, which combines both EnKF and PF equally, shows similar skill to429

EnKF-G, but avoids the spurious small-scale wind anomalies that dominate RMSD verifications430

at early lead times (Fig. 8b).431

We observe similar advantages in the case of Marco as well (Fig. 10). Marco di”ered from432

Laura in that it was both a smaller and shorter-lived storm. These reasons are one factor that433

led to our control experiment missing its intensification into a tropical cyclone altogether (Figs.434

10a–b). Using the augmented GDAS perturbations (EnKF-G and PF-G) significantly improves435

the ability of the filters to accurately adjust model states towards a realistic depiction of Marco, as436

is evident in the improved track forecasts. Following the same explanation provided for Laura in437

these experiments, we also note that PF-G (while improved over the EnKF) still shows di!culty438

matching the observed intensity of Marco. EnKF-G more rapidly spins up TC vortices, but shows439

signs of large spurious adjustments, as indicated by significant reductions in maximum wind speed440

following most forecast times (Fig. 10d), a problem that is again alleviated by PF-EnKF-G (Fig.441

10h).442

e. Spectral analysis of kinetic energy455

To supplement our comparison of ensemble forecast skill, we scrutinize each data assimilation456

strategy’s ability to produce analysis members that resemble model solutions. Figure 11 depicts the457

zonal kinetic energy (KE) at 250 hPa derived from a single analysis member of EnKF-G, PF-G, PF-458

EnKF-G. Results are averaged in the meridional direction and temporally before being plotted on a459

logarithmic scale with wavelengths decreasing to the right. The analysis KE spectra are compared460

to a climatological estimate for the FV3 model using 24 h forecasts from August 18 to August 29,461
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F!”. 8. Average RMSDs (solid) and ensemble spread (dashed) of (a) TC track, (b) max wind speed, and (c)

sea level pressure for the periods during which AL13 (Laura) and AL14 (Marco) respectively occurred. These

errors are verified against NHC best track and intensity data for EnKF (black), EnKF-G (red), PF-G (blue),

and PF-EnKF filter (green). The horizontal axis shows the cumulative number of cases used for calculating the

scores, along with the forecast lead time.

443

444

445

446

447

2020, which is verified to be identical for each experiment. For this comparison, deviations from462

the climatological estimate are assumed to stem from deficiencies in data assimilation, as discussed463

in Poterjoy (2022a).464

Results indicate a consistent positive bias in KE for scales below ↘400 km for the EnKF-G,465

demonstrating a significant deviation from model climatology; though not shown, we find a similar466

bias in the control EnKF experiment. This finding is consistent with verifications discussed467
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F!”. 9. Ensemble track (left) and intensity (left) forecasts from the (a) EnKF, (b) EnKF-G, (c) PF-G, and

(d) PF-EnKF-G experiments between 0000 UTC 20 Aug. and 0600 UTC 29 Aug., focusing on AL13 (Laura).

Forecasts are colored according to initialization time and NHC best-track data are plotted in black. The values are

from 10 members of the 102-hour ensemble forecasts derived from the posterior state of each data assimilation

method.
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449
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in previous sections, which identify a large spike in error for vorticity and max wind speeds468

with EnKF-G. Conversely, PF-G analyses and forecasts exhibit small but noteworthy, negative469

bias, which comes from populating the prior ensemble with a subset of coarse-resolution GDAS470
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F!”. 10. As in Fig. 9, but for forecasts initialized between 1200 UTC 20 Aug. and 0600 UTC 25 Aug.,

focusing on AL14 (Marco).

453

454

perturbations—added to the HAFS mean. While EnKF-G ingests GDAS perturbations in the same471

manner as PF-G, the resulting KE bias is dominated by the assumptions used to adjust model472

states to reflect the analysis mean and error covariance determined from the Kalman filter update473

equations. Likewise, the PF-G KE bias is minimal compared to that of EnKF-G, suggesting that474

the LPF provides a closer alignment to plausible FV3 atmospheric states. Notably, FV3 requires475

↘12 h to dissipate the excess noise induced by the EnKF-G, which is visualized using lighter-476

shaded contours for longer lead times. The excess noise is typically removed in operational data477
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assimilation systems by employing a digital filter (Lynch and Huang 1992) or through various478

other heuristic means. While the KE bias is often attributed to localization in ensemble filters, the479

positive bias is not found in PF-G which uses the same localization length scales as EnKF-G. As480

discussed in Poterjoy (2022a), a major source of KE bias stems from known limitations in data481

assimilation techniques that seek a minimum mean squared error estimate—as this estimate does482

not necessarily need to be a model solution when presented with non-Gaussian errors. We suspect483

that KE bias in EnKF-G members—and the cumulative impacts of this bias on 6-h forecasts—plays484

a role in the lack of spread found in this ensemble compared to PF-G. This aspect of the results485

will be the topic of a follow-up study.486

Lastly, the PF-EnKF-G experiment contains substantially lower KE bias compared to EnKF-G.487

Consistent with past research using idealized models (Kurosawa and Poterjoy 2023) this method488

retains the positive benefits of Kalman filter-based data assimilation while mitigating some of the489

limitations associated with non-Gaussian priors.490

F!”. 11. 250-hPa kinetic energy spectrum averaged from August 18 to August 29, 2020 for single-member

(red) EnKF-G, (blue) PF-G, and (green) PF-EnKF-G forecasts at 0-h, 6-h, and 12-h lead times. Darker colors

represent earlier lead times, while lighter colors indicate later lead times. The dotted black line shows a

climatological estimate for the FV3 model using 24-h forecasts. The vertical dashed line corresponds to the

length scale that is 6 times the grid spacing of the model.
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5. Conclusions496

This study proposes an augmented ensemble data assimilation strategy that incorporates flow-497

dependent information generated from a global model into an ensemble data assimilation system for498

regional models. The primary goal is to reduce sampling deficiency when the high computational499

cost of generating high-resolution ensembles limits the number of members that can be used500

for data assimilation. We evaluate this approach through cycling experiments using the NOAA501

HAFS, focusing on the development and evolution of Hurricanes Laura and Marco in August 2020.502

The experiments demonstrate that the augmented ensemble data assimilation system successfully503

reduces sampling deficiencies in high-resolution 40-member HAFS analyses. Additionally, we504

implement PFs with augmented perturbations, which are not originally part of the HAFS system,505

and compare their performance with the EnKF and a hybrid filter that combines both methods.506

We evaluate the performance of each data assimilation method in observation space and model507

space, using all available non-radiance measurements and ERA5 re-analyses, respectively. All508

data assimilation experiments that use augmented perturbations show reduced forecast errors,509

particularly from 600 hPa to 200 hPa, a region rich in upper-air measurements. This finding510

suggests a marked influence of the augmented approach for treating sampling deficiency in data-511

dense regions, which is an anticipated outcome given the theoretical limitations of ensemble data512

assimilation for well-observed high-dimensional dynamical systems (Hodyss and Morzfeld 2023).513

Additionally, when focusing on the atmospheric environment near TCs, the benchmark EnKF514

without augmented perturbations tends to underestimate storm intensity and completely miss the515

transition of one of our cases (Hurricane Marco) into a hurricane. We suspect that the small516

ensemble size, model resolution, and duration of the data assimilation experiments (3 weeks) were517

su!cient to cause the EnKF to experience filter divergence over portions of the model domain.518

The augmented approach, however, is found to mitigate this deficiency and produce much more519

skillful depictions of storm evolution. We further note that our choice of model grid spacing for520

these experiments (6 km) is less than the operational implementation of HAFS, which leads to521

additional intensity biases for storms. Likewise, subgrid-scale physical parameterization schemes522

and atmosphere-ocean coupling methodology in our version of HAFS predate operational versions523

of this model, which are additional sources of bias in our experiments.524
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We also investigate the implications of applying non-Gaussian data assimilation methods based on525

particle filters for HAFS by performing EnKF and PF experiments with augmented perturbations.526

We evaluate the prediction accuracy of each data assimilation technique over the entire model527

region using the ECMWF v5 reanalysis, and assess forecast accuracy for basic tropical cyclone528

metrics using NHC best track data. The EnKF performs best at the beginning of the forecast529

period—likely because the resulting analysis is derived to achieve a mean squared error estimate—530

but the advantages decrease as the forecast progresses to larger lead times. Nevertheless, the EnKF531

is found to induce a positive kinetic energy bias at shorter wavelengths in analysis members, owing532

to the use of error covariances alone when updating ensemble perturbations. The LPF, while533

showing a larger sensitivity to model bias, does not exhibit the same KE bias as the EnKF—a534

finding that is consistent with past studies. A mixed filter methodology that uses an intermediate535

LPF update before applying an EnKF update helps alleviate issues with the standalone (EnKF and536

LPF) data assimilation methods.537

We emphasize that the operational data assimilation for HAFS is not ensemble based, and538

instead uses a variational scheme to update a single model state. Background error covariance for539

the variational analysis comes from GDAS instead of a self-cycled HAFS ensemble, which is a540

major di”erence between our methodology and the operational one. The current study deviates541

from the operational HAFS by using a serial ensemble square root filter and a local PF to perform542

the data assimilation. This means that observations are processed individually or in smaller subsets543

rather than simultaneously to update model states. This decision is mainly due to the design of544

the local particle filter and the blended PF-EnKF methods which require serial processing of545

observations to implement localization.546

Moreover, the sensitivity of the proposed approach to the quality of GDAS forecast quality re-547

quires further investigation, including the development of flexible weighting schemes to prioritize548

higher-quality perturbations. By addressing these factors, the proposed approach could signifi-549

cantly enhance NOAA’s regional forecasting capabilities while remaining practical for real-time550

applications.551

We further note that our experiments do not apply specific approaches for reducing non-physical552

updates during data assimilation. This design choice di”ers from data assimilation systems that553

use digital filter initialization, normal mode initialization, incremental analysis update (IAU), or554
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other means of reducing noise that may occur during data assimilation (Lynch and Huang 1992;555

Benjamin et al. 2004; Derber and Bouttier 1999; Bannister 2021). It is worth noting that these556

methods are often integrated into operational prediction systems to optimize their performances.557

While these techniques could potentially enhance the ability of the EnKF to produce large-scale558

quasi-balanced analyses in this study, the additional constraints may not be suitable for mesoscale559

weather systems, and would complicate the interpretation of results.560

Lastly, the data assimilation experiments performed in this study adopt the same methodology561

for computing and removing bias for satellite radiance measurements that exists in operational562

implementations of HWRF and HAFS; i.e., coe!cients for a state-dependent bias model are563

trained by GDAS and not updated within HAFS. This means of training a bias model is suboptimal,564

as shown in Knisely and Poterjoy (2023), and can have large implications for data assimilation565

methods that are more sensitive to bias, such as the LPF. The integration of new data assimilation566

techniques into a convective-permitting, basin-wide configuration of HAFS that performs its own567

online estimation of bias model coe!cients will be the topic of a future study.568
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