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ABSTRACT: Model predictive control (MPC) is an optimization-based control framework for

linear and nonlinear systems. MPC estimates control inputs by iterative optimization of a cost func-

tion that minimizes deviations from a desired state while accounting for control costs over a finite

prediction horizon. This process typically involves direct computations in state space through full

model evaluations, making it computationally expensive for high-dimensional nonlinear systems.

This study introduces ensemble-based model predictive control (EnMPC), a novel framework for

nonlinear control that combines MPC and ensemble data assimilation. EnMPC directly solves the

MPC cost function using ensemble smoother methods, including the four-dimensional ensemble

variational assimilation method, ensemble Kalman smoother, and particle smoother. By assimi-

lating objective outputs that incorporate information about reference trajectories and constraints,

EnMPC mitigates nonlinearity and uncertainty, outperforming conventional MPC in computational

efficiency through ensemble approximations. In addition, EnMPC is able to determine optimal

weights for control inputs by using the analysis error covariance derived from ensemble data as-

similation. We present two different approaches for defining control objectives. The penalty term

approach applies penalties when model predictions violate pre-defined constraints by assimilating

constraint information. In contrast, the trajectory tracking approach assimilates outputs derived

from a reference trajectory to lead the system in the direction of the desired state.
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1. Introduction26

The intensification of extreme weather events induced by global warming is causing significant27

damage to human life and property worldwide. As the IPCC sixth assessment report points28

out, rising temperatures increase the threat by increasing the frequency of heat waves, heavy29

rains and floods, and the intensity of hurricanes and typhoons (IPCC 2021). The demand for30

new technological advances is growing as it becomes more difficult to manage the increasing31

number of extreme weather events with only infrastructure improvements. Since the mid-20th32

century, researchers have considered interventions such as cloud seeding, where they use silver33

iodide to induce rainfall. However, while scientific studies have provided evidence to support the34

effectiveness of the approach to some extent (Langmuir 1948; Ryan and King 1997; Silverman35

2001), its efficiency and optimization remain areas of active research.36

Model predictive control (MPC) is a powerful control technique that uses dynamic models to37

predict future behavior and optimize control actions over a finite time horizon (Morari and Lee38

1999; Rockett and Hathway 2017; Babu et al. 2019; Schwenzer et al. 2021). As computational39

power has advanced, the range of its applications has expanded, and new challenges, such as40

weather control, have become increasingly realistic. However, meteorological systems are highly41

complex, consisting of numerous interconnected elements such as the atmosphere, oceans, land,42

and biosphere (Lea et al. 2015; Sluka et al. 2016; Kurosawa et al. 2023). As its behavior exhibits43

significant nonlinearities, small variations can have unpredictable effects on the entire system44

(Slingo and Palmer 2011), and the system responds slowly to interventions (Leith 1974), making45

accurate predictions and control difficult. Moreover, weather models often require significant46

computational resources due to their high dimensionality and the need for fine temporal and spatial47

resolutions. Given these characteristics of weather systems, proper handling of uncertainty and48

the heavy computational cost of calculating optimal control inputs are key challenges for achieving49

effective weather control.50

To properly handle uncertainty, data assimilation integrates observations and numerical models51

to more accurately estimate the state of the system, and it is widely used in weather forecast-52

ing (Houtekamer and Mitchell 1998; Kalnay 2003; Leutbecher and Palmer 2008; Evensen 2009).53

Miyoshi and Sun (2022) proposed a new experimental framework to systematically evaluate control54

approaches through ensemble prediction. In the framework, known as the control simulation exper-55

3



iment (CSE), they used ensemble data assimilation for state estimation. Subsequently, Kawasaki56

and Kotsuki (2024) integrated a conventional MPC method and achieved efficient control with57

minimal input within the CSE framework. However, the computational cost of calculating optimal58

control inputs remains high, and there is a need to develop more efficient control methods.59

Sawada (2024a,b) proposed a weather control method that combines ensemble data assimilation60

and MPC, utilizing the ensemble Kalman filter (EnKF) and ensemble Kalman smoother (EnKS) to61

solve the MPC problem efficiently. Traditional MPC requires direct computations in state spaces62

and explicit calculation of system evolution within the prediction horizon, whereas ensemble63

approximations use statistical representations, enabling more efficient control of complex systems.64

The EnKF-based control method, which directly utilizes the existing EnKF architecture, offers65

flexibility for geoscience applications but still faces several challenges. First, when calculating66

the optimal control inputs, the system’s behavior within the evaluation horizon or window of the67

cost function is assumed to be approximately linear. In systems with strong nonlinearity, this68

approximation does not hold, and errors are likely to occur when calculating the optimal control69

input (Zhang et al. 2009; Kurosawa and Poterjoy 2021). Second, as used in Sawada (2024a),70

many control problems commonly add penalty terms to the cost function to handle constraint71

violations in control objectives. In the penalty-based approaches, when control objectives are72

complex or involve trade-offs between multiple competing goals, designing the cost function and73

setting penalties becomes challenging, potentially reducing performance and causing unintended74

behavior.75

To address these challenges, the current study extends the methodology of using ensemble data76

assimilation for solving MPC problems, building upon the insights of Sawada (2024a). Specifically,77

we propose an ensemble model predictive control (EnMPC) framework that employs various78

ensemble data assimilation techniques, including 4D-ensemble-Var (4DEnVar), particle filter (PF),79

and particle smoother (PS). This approach expands the range of tools available for solving MPC80

problems in high-dimensional nonlinear systems. As part of this framework, the EnMPC includes81

the method proposed by Sawada (2024a), which uses the EnKF and EnKS to solve MPC problems.82

Furthermore, the EnMPC framework introduces not only the penalty-based approach but also a83

trajectory-tracking approach to achieve control, providing greater flexibility in addressing diverse84
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control objectives. To demonstrate the effectiveness of the proposed EnMPC framework, we85

conduct a comparison with conventional MPC approaches.86

Yamaguchi and Ravela (2023) proposed an ensemble MPC framework using fully nonlinear87

forward simulations and Gaussian processes for backward gain computation. While their approach88

is innovative and effective for control in low-dimensional robotic systems, our proposed EnMPC89

framework differs in several key aspects. Specifically, we integrate ensemble-based data assimila-90

tion techniques into the control framework, allowing the assimilation of actual observations and the91

estimation of both the initial state and control variables. Moreover, our focus is on high-dimensional92

geophysical systems, where observation-based state estimation is indispensable.93

The manuscript is organized in the following manner. Section 2 provides a brief overview of94

ensemble data assimilation and MPC. We introduce EnMPC in Sec. 3, and Sec. 4 describes the95

experimental setup. Section 5 presents the experimental results, and the last section concludes the96

paper with a summary of the key findings, potential applications, and directions for future research.97

2. MPC and data assimilation98

This section provides a brief overview of MPC and ensemble data assimilation, which constitute99

the proposed EnMPC framework. We begin by presenting the MPC algorithm for dealing with100

control problems. Subsequently, we outline ensemble data assimilation, focusing on 4DEnVar,101

EnKF, and PF. This section explains MPC and data assimilation individually, while Sec. 3102

highlights their similarities, differences, and how they are combined to form EnMPC.103

a. MPC104

MPC is a control strategy that optimizes control inputs by using a dynamic model to predict the105

future behavior of the system. MPC solves an optimization problem at each time step to minimize106

a cost function over a finite predictive horizon. The specific design of the cost function depends107

on the application, but the general formulation can be expressed as:108

𝐽 (u0,u1, . . . ,u𝑇𝑐 ) =
𝑇𝑐∑︁
𝑡=0

u⊤
𝑡 Cu−1

u𝑡︸          ︷︷          ︸
𝐽input

+
𝑇𝑝∑︁
𝑡=0

(r𝑡 −𝐻𝑐 (x𝑡))⊤Cr−1 (r𝑡 −𝐻𝑐 (x𝑡))︸                                         ︷︷                                         ︸
𝐽state

.

s.t. x𝑡+1 = 𝑀𝑡 (x𝑡 ,u𝑡).

(1)
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Here, x𝑡 denotes the state variable at time 𝑡. The next state x𝑡+1 is obtained by integrating the109

nonlinear forecast model operator 𝑀𝑡 forward from the current state x𝑡 and the control input u𝑡 .110

The control input cost 𝐽input is typically optimized over a shorter control horizon 𝑇𝑐 within the111

prediction horizon 𝑇𝑝. 𝐽input penalizes the magnitude of the control input, preventing it from being112

excessively large. The state deviation cost 𝐽state evaluates the difference between model-predicted113

states and the control objective r, and the optimization problem is performed over a finite prediction114

horizon 𝑇𝑝. 𝐻c is an operator that maps the state variables x to the control variables. Cu and115

Cr are weighting matrices for the control input u and the deviations between state variables and116

control objective, respectively. In this study, the control horizon 𝑇𝑐 is shorter than the prediction117

horizon 𝑇𝑝, where control is applied only at the first time step of each cycle.118

In conventional MPC, optimal control inputs are typically obtained by minimizing a cost function119

through gradient-based optimization. For nonlinear systems, this often involves solving the adjoint120

equations to efficiently compute gradients of the cost function with respect to control variables.121

Although this approach is accurate, it requires derivation and implementation of the adjoint model,122

which can be costly and challenging, especially for high-dimensional systems such as numerical123

weather prediction models.124

Among the two components of the cost function in (1), the state deviation cost 𝐽s𝑡𝑎𝑡𝑒 typically has125

the highest computational cost. This is because it involves predicting and evaluating the future states126

of the system over the entire prediction horizon, which requires extensive computations, especially127

for complex or nonlinear systems. The ensemble approximation can mitigate this computational128

cost by using representative trajectories to approximate future states, as discussed in Sec. 3.129

b. The four-dimensional variational method (4DVar) and 4DEnVar130

The 4DVar method estimates the optimal initial state x0 over a time window by considering the131

misfits between observations and forecast model states at multiple times. This process is achieved132

by minimizing the following cost function (Talagrand 2014; Bannister 2017):133

𝐽 (x0) =
(
x0 −x𝑏0

)⊤
B−1

(
x0 −x𝑏0

)
︸                         ︷︷                         ︸

𝐽background

+
𝜏∑︁
𝑡=0

(y𝑡 −𝐻 (x𝑡))⊤R−1 (y𝑡 −𝐻 (x𝑡))︸                                       ︷︷                                       ︸
𝐽observation

,

s.t. x𝑡+1 = 𝑀𝑡 (x𝑡)

(2)
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The first term in (2) qualifies the difference between the initial guess (background or prior) x𝑏0 and the134

estimated state x0, weighted by the background error covariance matrix B. The second term in (2)135

measures the misfit between the state variables and the observations y at times 𝑡 = 0,1,2, ..., 𝜏. The136

observation operator 𝐻 maps the state x to the observation space, and R represents the observation137

error covariance matrix. The time window 𝜏 is referred to as the data assimilation window and138

plays the same role as the prediction horizon 𝑇𝑝 in MPC. Therefore, the second term 𝐽observation in139

(2) serves a similar purpose to the state deviation cost 𝐽state in the MPC cost function (1), as both140

evaluate the discrepancies between the predicted states and the target values or observations over141

a specific time horizon.142

Operational systems often implement 4DVar using an incremental approach to utilize the lin-143

earized model instead of the full nonlinear model (Courtier et al. 1994). Defining 𝛿x0 = x0 − x𝑏0 ,144

the cost function 𝐽 (x0) in (2) as becomes:145

𝐽 (𝛿x0) = 𝛿x⊤0 B−1𝛿x0︸       ︷︷       ︸
𝐽background

+
𝜏∑︁
𝑡=0

(H𝛿x𝑡 −d𝑡)⊤R−1(H𝛿x𝑡 −d𝑡)︸                                    ︷︷                                    ︸
𝐽observation

,

s.t. 𝛿x𝑡+1 = M𝑡 (𝛿x𝑡)

(3)

where M𝑡 and H are the tangent linear operators of 𝑀𝑡 and 𝐻, respectively. The innovation vector146

d𝑡 is defined as d𝑡 = y𝑡 −𝐻 [𝑀𝑡 (x𝑏0)].147

The convergence rate of the optimization problem depends on the condition number of the148

Hessian matrix (Zupanski 1996). In operational data assimilation systems using atmospheric149

models, the dimension of the state vector is typically on the order of 𝑂 (1010) or greater. This150

results in a background error covariance matrix B that is too large to be explicitly represented or151

handle directly. To address this computational challenge, operational systems commonly employ152

the following approach (Buehner 2005; Wang et al. 2010; Zhu et al. 2022):153


𝛿x0 = U𝑥v,

H𝛿x𝑡 = U𝑦
𝑡 v,

(4)

Here, U𝑥 is a square root of the background error covariance matrix (B = U𝑥U𝑥⊤; Lorenc 2003),154

and v is the new control variable in the reduced-dimension space. The initial perturbation 𝛿x0 and155
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the observation perturbation H𝛿x𝑡 are projected onto a subspace spanned by ensemble members156

using the transformation matrices U𝑥 and U𝑦
𝑡 , respectively. The perturbation matrices U𝑥 and U𝑦

157

are defined as follows:158


U𝑥 = 1√

𝑁𝑒−1

[
𝛿x(1) , 𝛿x(2) , · · · , 𝛿x(𝑁𝑒)

]

U𝑦 = 1√
𝑁𝑒−1

[
𝛿y(1) , 𝛿y(2) , · · · , 𝛿y(𝑁𝑒)

]
,

(5)

where 𝑁𝑒 is the ensemble size, 𝛿x(𝑘) and 𝛿y(𝑘) are the 𝑘-th ensemble perturbations for the model159

state and observation space, respectively. Perturbations in observation space are calculated using160

the tangent linear observation operator, where 𝛿y = H𝛿x. By adopting this transformation, the cost161

function is reformulated as:162

𝐽 (v) = v⊤v︸︷︷︸
𝐽background

+
𝜏∑︁
𝑡=0

(U𝑦
𝑡 v−d𝑡)⊤R−1(U𝑦

𝑡 v−d𝑡)︸                                 ︷︷                                 ︸
𝐽observation

.
(6)

To minimize (6), v must satisfy the condition (𝜕𝐽/𝜕v)⊤ = 0. As a result, this approach eliminates the163

need for an adjoint model, as all calculations occur within the subspace spanned by the ensemble164

samples. This incremental 4DEnVar approach combines with ensemble-based transformations165

thus balances computational efficiency and the practical constraints of high-dimensional data166

assimilation systems. For further details on these methods, we encourage readers to review the167

mathematical descriptions in Liu et al. (2009), Fairbairn et al. (2014), Poterjoy and Zhang (2015),168

and Kurosawa and Poterjoy (2021).169

c. EnKF and EnKS170

In this study, the control method based on the EnKF adopts the framework proposed in Sawada171

(2024a). The EnKF minimizes the following cost function to obtain the analysis state:172

𝐽 (x0) = (x0 −x𝑏0)
⊤P𝑏−1(x0 −x𝑏0)︸                         ︷︷                         ︸
𝐽background

+ (y0 −𝐻 (x0))⊤R−1(y0 −𝐻 (x0))︸                                   ︷︷                                   ︸
𝐽observation

. (7)

8



Here, x𝑏0 is the ensemble mean of the background state variables and P𝑏 represents the background173

error covariance matrix. As in 4DVar, MPC and EnKF consider similar cost components, taking174

into account the background information and discrepancies in their respective frameworks. From a175

variational perspective, ensemble methods like the EnKF can be interpreted as approximating the176

solution to a variational cost function such as (2), using ensemble statistics to represent background177

error covariances.178

The EnKF efficiently reduces the computational cost by representing the error covariance matrix179

P𝑏 statistically using ensemble members as follows (Evensen 1994; Whitaker and Hamill 2002;180

Houtekamer and Zhang 2016):181

P𝑏 = EET, (8)

E = 1√
𝑁𝑒−1 [𝛿x(1) , . . . , 𝛿x(𝑁𝑒)], (9)

where E is the matrix of ensemble members, with each column representing the perturbation from182

the forecast state. 𝛿x(𝑘) is the 𝑘-th ensemble perturbations for the model state. Analytically solving183

the cost function in (7) yields the update of the ensemble mean. Unlike the variational methods184

discussed in Sec.2.b, which require iterative numerical optimization to minimize their respective185

cost functions, EnKF does not require such iterations.186

Regarding the update of ensemble members, we obtain the ensemble perturbation matrix X𝑎
187

using the ensemble transform Kalman filter (ETKF; Bishop et al. 2001; Hunt et al. 2007), as188

follows:189

X𝑎 = X𝑏W𝑎, (10)

W𝑎 = [(𝑁𝑒 −1)P̃𝑎]1/2, (11)

P̃𝑎 = [(𝑁𝑒 −1)I+ (Y𝑏)⊤R−1Y𝑏]−1. (12)

Here, X𝑏 is the background perturbations, and P̃𝑎 represents the analysis error covariance matrix190

in the transformed space. Y𝑏 represents the perturbation of the background ensemble in the191

observation space, and the weights W𝑎 are then derived based on the analysis covariance. Similarly192

to 4DEnVar, which uses ensemble approximations to project initial and observation perturbations193
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onto a subspace spanned by ensemble members, the ETKF efficiently reduces the dimensionality194

of the analysis problem with ensemble-based transformations.195

Sequential methods, such as EnKF, update the state estimate as new observations become196

available, typically using a forecast–analysis cycle. In contrast, variational methods formulate the197

state estimation as an optimization problem over a time window, where the model trajectory is198

adjusted to minimize a cost function based on observations and prior estimates.199

While EnKF is effective for real-time state estimation, EnKS improves estimation accuracy further200

by considering observations over a time window and incorporating their influence retrospectively.201

In this study, we employ 4D-ETKF as our implementation of EnKS. 4D-ETKF estimates the initial202

state by assimilating observations distributed over a finite time window, using an ensemble-based203

transformation that minimizes the analysis error covariance. Unlike the original EnKS that relies204

on sequential updates, 4D-ETKF applies a single batch update by linearly combining ensemble205

perturbations, ensuring consistency and computational efficiency without the need for adjoint206

models. For a comprehensive explanation, please refer to Miyoshi and Aranami (2006) and Hunt207

et al. (2007).208

d. PF and PS209

Variational methods and EnKF estimate the analysis state by assuming Gaussian error statistics210

for the background and observations and minimizing the cost functions defined in (2) and (7). In211

contrast, the PF does not assume Gaussianity or linearity but approximates the entire probability212

distribution of the state as a set of particles (ensembles or samples). By assigning a likelihood to213

each particle, PF estimates the analysis state, making it suitable for systems with strong nonlinearity214

and non-Gaussianity. The particle distribution plays a similar role to the error covariance matrices215

(B and P) used in the variational methods and EnKF. Unlike these methods, however, PF does not216

explicitly calculate the error covariance; instead, the particle distribution implicitly represents their217

statistical properties of the background error covariance. Although the likelihood function used218

in PF resembles the observation term in the cost functions of other data assimilation methods, it219

plays a more central and explicit role in PF.220
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For each particle x(𝑘) , the likelihood is calculated as:221

𝑝(y|x(𝑘)) ∝ exp
(
−1

2
(y−𝐻 (x(𝑘)))⊤R−1(y−𝐻 (x(𝑘)))

)
. (13)

This calculation resembles the state deviation term 𝐽state in (1) for MPC, where posterior states are222

penalized based on their deviation from the reference. The likelihoods are normalized to produce223

the particle weights λ(𝑘):224

λ(𝑘) =
𝑝(y|x(𝑘))∑𝑁𝑒

𝑚=1 𝑝(y|x(𝑚))
. (14)

Using the weighted particles, PF approximates the posterior distribution (filter distribution) as:225

𝑝(x|y) ≈
𝑁𝑒∑︁
𝑚=1

λ(𝑚)𝛿(x−x(𝑚)), (15)

where 𝛿(x− x(𝑘)) represents a Dirac delta function centered at particle x(𝑘) . This representation226

indicates that the posterior distribution is expressed as a discrete set of weighted particles. To227

better approximate the posterior distribution and mitigate degeneracy, where some particles have228

negligible weights, a resampling step is performed. During resampling, particles with higher229

weights are replicated, while those with lower weights are discarded, ensuring the ensemble230

remains focused on the most likely regions of the state space.231

The PF is a method for sequentially estimating states, while the PS uses future observation data232

to provide more accurate state estimates. Applying the weights calculated during the filter update233

within a data assimilation window, PS uses the future weights to find the smoother solution at234

any point throughout the window. This approach is justified by the Markov property, where the235

system’s future evolution depends solely on its current state (Chopin and Papaspiliopoulos 2020;236

Nyobe et al. 2023). By taking advantage of this feature, the smoother can produce more accurate237

estimates over the assimilation window by using future data and previously calculated weights.238

We note that several studies propose strategies to address degeneracy and maintain particle239

diversity (e.g., Penny and Miyoshi 2016; Potthast et al. 2019; Kotsuki et al. 2022). These differences240

include the resampling strategy, techniques to mitigate particle collapse, and localization to manage241
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high-dimensional systems. The current study adopts the PF and PS algorithm based on the recently242

proposed PF by Poterjoy (2022), as it employs regularization and iterative updates to effectively243

address degeneracy and maintain particle diversity. For more detailed information on this approach,244

please refer to Poterjoy (2016, 2022) and Kurosawa and Poterjoy (2023).245

3. Ensemble Model Predictive Control246

The structural similarity between estimation and control has been well established in control247

theory, where the full information control problem and the state estimation problem are known to248

be duals (Zhou et al. 1996).249

Section 2 provides an overview of conventional MPC and ensemble data assimilation, high-250

lighting their shared goal of determining optimal inputs based on the current state and future251

predictions. This section introduces a new control technique called EnMPC, which integrates252

these two methods. Since EnMPC uses the principles of data assimilation, it incorporates objec-253

tive outputs that contain information about constraints and reference trajectories typically used in254

MPC. These objective outputs are assimilated in a manner similar to actual observations in data255

assimilation, allowing the cost function in EnMPC to adopt a structure similar to that in ensemble256

data assimilation.257

Sawada (2024a) focuses on similarities and differences between EnKF and MPC and introduces258

EnKF-based EnMPC. Extending this concept, this section focuses on the mathematical formulation259

of EnMPC, using ideas from 4DVar to develop a 4DEnVar-based EnMPC approach. We define the260

formulation of EnMPC in a straightforward manner by modifying the MPC cost function in (1) to261

make it closer in structure to that of 4DEnVar in (6).262

First, data assimilation focuses on state estimation by updating the initial conditions for model in-263

tegration, while MPC estimates control inputs applied during the control horizon 𝑇𝑐. The proposed264

EnMPC framework treats the control inputs as acting only at the initial time, similar to how data265

assimilation updates the initial states. While this assumption simplifies the framework, extending266

EnMPC to optimize control inputs over the entire control horizon𝑇𝑐 remains an important direction267

for future research. Second, we generate an objective output vector yr. This allows EnMPC to268

handle reference information in the same way data assimilation incorporates observations. The269
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cost function for EnMPC is therefore expressed as follows:270

𝐽 (x0) = (x0 −x𝑎0)
⊤P𝑎−1 (x0 −x𝑎0)︸                        ︷︷                        ︸
𝐽input

+
𝑇𝑝∑︁
𝑡=0

(yr𝑡 −𝐻r (x𝑡))⊤Cr−1 (yr𝑡 −𝐻r (x𝑡))︸                                           ︷︷                                           ︸
𝐽state

.

s.t. x𝑡+1 = 𝑀𝑡 (x𝑡).

(16)

Here, P𝑎 is the analysis error covariance matrix, as the ensemble updated by data assimilation can271

be used directly. 𝐻r is the operator that maps the state vector to the objective outputs space.272

In (16), the variable x0 is optimized as the control input to guide the system’s trajectory x𝑡273

toward a set of desirable future states yr
𝑡 . Deviations of x0 from the initial analysis x𝑎0 , obtained via274

ensemble data assimilation are penalized to ensure that the control input remains realistic. Once275

the optimal control input x∗0 is found, the resulting trajectory x𝑐 = argmin 𝐽 (x0) is regarded as the276

controlled state.277

As described in Section 2b, applying ensemble approximations to the cost function in (16) yields:278

𝐽 (v) = v⊤v︸︷︷︸
𝐽input

+
𝑇𝑝∑︁
𝑡=0

(U𝑦
𝑡 v−dr

𝑡 )⊤Cr−1 (U𝑦
𝑡 v−dr

𝑡 )︸                                   ︷︷                                   ︸
𝐽state

,
(17)

where the innovation vector dr
𝑡 is defined as dr

𝑡 = yr𝑡 −𝐻r [𝑀𝑡 (x𝑎0)]. The gradient of the cost279

function in (17) with respect to v is expressed as:280

(
𝜕𝐽

𝜕v

)⊤
= 2v+2

𝑇𝑝∑︁
𝑡=0

U𝑦
𝑡

⊤Cr−1 [
U𝑦
𝑡 v−dr

𝑡

]
(18)

This expression shows that solving the EnMPC optimization problem does not require the full281

nonlinear model or its tangent linear model, as the ensemble approximations are used to calculate282

the gradient.283

One key advantage of ensemble-based methods over adjoint-based approaches is their suitability284

for parallel computation. Adjoint methods require sequential iterations between forward and285

backward (adjoint) models, which can be computationally demanding and less scalable. In contrast,286
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ensemble methods allow for straightforward parallelization across ensemble members, making287

them highly attractive for real-time control and operational applications.288

A key feature of EnMPC is its ability to assimilate objective outputs in a manner similar to289

actual observations in data assimilation. Therefore, the EnMPC approach, which directly solves290

the MPC cost function using ensemble estimations, is not limited to 4DEnVar-based framework,291

but can also be applied to EnKS- or PS-based frameworks. This study introduces two approaches292

for defining control objectives. The first, referred to as the ”penalty term approach,” creates an293

objective output vector only when the model prediction exceeds a predefined threshold, as used294

in Sawada (2024a). The second, called the ”trajectory tracking approach,” generates objective295

outputs directly from the reference trajectory, enabling straightforward objective definition. We296

provide more details in Sec. 4c. Lastly, EnMPC can appropriately handle sampling errors and297

uncertainties by incorporating techniques from ensemble data assimilation, such as localization298

and inflation, as detailed in Sawada (2024b).299

4. Experimental settings300

In this section, we describe the experimental setup used to evaluate the effectiveness of the301

proposed EnMPC through numerical experiments using the Lorenz63 (Lorenz 1963) model. While302

Sec. 3 introduces the full information control assuming a known initial state, this section presents303

a more realistic setting where the initial condition is unknown and must be estimated using data304

assimilation. Our experiments follow the CSE procedure (Miyoshi and Sun 2022; Sun et al. 2023;305

Ouyang et al. 2023; Kawasaki and Kotsuki 2024; Sawada 2024a).306

a. Experimental procedure: Coupling of Data Assimilation and Control307

Figure 1 illustrates the process of the CSE using the proposed EnMPC. The procedure consists308

of the following steps:309

1. To obtain an accurate estimate of the current state of the system, we first simulate observations310

from the nature run (NR; or the true state of the system). We then perform a conventional311

ensemble data assimilation using these simulated observations, which corresponds to the filter312

update (Fig. 1a). This step includes estimating unobserved state variables that are targets313
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for control. The outcome of this process provides the initial conditions necessary for the314

subsequent control step.315

2. Based on the state estimated in the previous step, we determine the optimal control input using316

the proposed EnMPC. The ensemble used in the control problem is the analysis ensemble317

obtained through data assimilation. This ensemble reflects the flow-dependent uncertainty318

at the initial time and is directly employed for estimating the optimal control inputs. No319

additional sampling is performed specifically for control.320

We consider two approaches for control input determination:321

(a) Penalty term approach322

This approach uses an objective output operator, which acts as a penalty function com-323

monly used in the conventional MPC. Objective outputs are generated when the model324

prediction violates the predefined constraints, effectively penalizing unsuitable behavior325

(Fig. 1b1).326

(b) Trajectory tracking approach327

In the current study, objective outputs are directly derived from the reference trajectory,328

making it straightforward to guide the system toward the desired state (Fig. 1b2).329

3. The optimal control input determined in the second step is applied to the NR to perform the330

control, and the state is integrated forward to the next time step. Similarly, we apply the same331

control input to the ensemble members and predict their states for the next time step. With the332

updated system state and ensemble predictions, we restart the CSE cycle from the first step333

(Fig. 1c).334

Here, we emphasize that for state estimation in the first step (Fig. 1a), we employ conventional335

ensemble data assimilation methods, corresponding to the filter update. In contrast, the second336

step (Fig. 1b) utilizes the proposed EnMPC, which is based on an ensemble smoother update, to337

determine the optimal control inputs. For data assimilation in the first step, we consistently use the338

ETKF, regardless of which ensemble smoother update method (4DEnVar, EnKS, or PS) is employed339

in EnMPC in the second step. This uniformity ensures that any differences in performance are340

solely due to the choice of method in EnMPC in the second step and not influenced by variations341

in the state estimation in the first step. Lastly, the current study adopts a moving horizon window342
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of one step. That is, regardless of the length of the prediction horizon used in EnMPC, data343

assimilation and control input estimation are performed at every time step in each cycle.344

Fig. 1. Algorithmic flow of the proposed EnMPC-based CSE for a system with upper and lower limits. (a)

State estimation: estimates the current state of the system using data assimilation (filter update). (b) Control input

optimization: determines the optimal control inputs using the proposed EnMPC framework based on ensemble

forecasts; (b.1) penalty term approach and (b.2) trajectory tracking approach. (c) Application of control inputs:

applies the optimized control inputs to the NR, integrates the system state forward to the next time step, and

returns to the filter update step (a), restarting the CSE cycle.

345

346

347

348

349

350

b. Model description351

The current study uses the Lorenz63 (Lorenz 1963) model for testing the proposed control352

method. Although relatively simple in structure, the model is widely employed as a testbed for353

understanding chaotic system behavior. This study aims to demonstrate the effectiveness of EnMPC354

for control and parameter estimation in such chaotic systems.355
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The Lorenz63 model is a simplified model of atmospheric convection and is represented by the356

following set of ordinary differential equations with three state variables:357



𝑑𝑥

𝑑𝑡
= 𝜎(𝑦− 𝑥),

𝑑𝑦

𝑑𝑡
= 𝑥(𝜌− 𝑧) − 𝑦,

𝑑𝑧

𝑑𝑡
= 𝑥𝑦− 𝛽𝑧.

(19)

Following Lorenz (1963), we set system parameters 𝜎 = 10, 𝜌 = 28, and 𝛽 = 8/3. The time358

step is set to Δ𝑡 = 0.01 (units defined arbitrarily as 1 hour; see Lorenz (1963)). The Lorenz63359

model is characterized by its chaotic trajectory, which oscillates around two unstable fixed points,360

(±
√

72,±
√

72,27)⊤ (Kaiser et al. 2018).361

Using the Lorenz63 model, the current study investigates two scenarios for control input estima-362

tion: estimating only 𝑢𝑥 , as shown in (20), and estimating all three control variables 𝑢𝑥 , 𝑢𝑦, and 𝑢𝑧,363

as shown in (21):364 

𝑑𝑥

𝑑𝑡
= 𝜎(𝑦− 𝑥) +𝑢𝑥 ,

𝑑𝑦

𝑑𝑡
= 𝑥(𝜌− 𝑧) − 𝑦,

𝑑𝑧

𝑑𝑡
= 𝑥𝑦− 𝛽𝑧,

(20)

and365 

𝑑𝑥

𝑑𝑡
= 𝜎(𝑦− 𝑥) +𝑢𝑥 ,

𝑑𝑦

𝑑𝑡
= 𝑥(𝜌− 𝑧) − 𝑦 +𝑢𝑦,

𝑑𝑧

𝑑𝑡
= 𝑥𝑦− 𝛽𝑧+𝑢𝑧 .

(21)

The control objective in the current study is to keep the value of 𝑥 in the model positive, ensuring366

that the system avoids undesired negative states. Note that the control inputs are applied to the time367

derivatives of the state variables, rather than the states themselves.368

c. Objective outputs and operators369

In the proposed EnMPC framework, we address control problems using two approaches: the370

penalty term approach and the trajectory tracking approach. Each approach employs different371
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methods for generating objective outputs yr and operators 𝐻r. Throughout our experiments, we372

set the objective outputs error covariance matrix Cr, which acts as the weighting matrix for the373

deviations between state variables and control objectives, to Cr = 0.01I, where I is the identity374

matrix. This configuration is based on insights from preliminary experiments and the detailed375

investigation in Sawada (2024a,b).376

1) Penalty term approach377

In the penalty term approach, we generate objective outputs to ensure that variables remain within378

specified thresholds. We set the objective outputs value to the threshold and assimilate it into the379

state space via an objective output operator. Sawada (2024a) employs a similar strategy, designing380

the control operator to impose penalties when constraints are violated. This approach effectively381

makes the objective output operator serve the same role as the penalty function commonly used in382

conventional MPC.383

The control objective of the current study is to keep the 𝑥 value positive in the Lorenz63 model.384

When we apply the penalty term approach for the objective (as detailed in Sec. 5a), we use the385

following objective outputs operator 𝐻𝑜𝑏 𝑗 :386

𝐻r (𝑥) = log(1+ exp(−𝑎𝑥))
𝑎

, (22)

where 𝑎 is a positive constant that determines the sharpness of the penalty function. As shown387

in Fig. 2, when 𝑎 = 100, the function approximates a hinge function that activates the penalty388

only when 𝑥 becomes less than zero. To keep the value of 𝑥 non-negative, we set the objective389

outputs yr = 0. We then use an objective output operator 𝐻r to project the model state 𝑥 into390

the observation space 𝐻r (𝑥), effectively imposing a penalty when 𝑥 violates the constraint. A391

smaller 𝑎 results in a smoother transition, applying penalties even when 𝑥 is above the threshold392

but approaching the threshold, as shown in Fig. 2.393

Figure 3 illustrates the impact of changing the parameter 𝑎 in the objective output operator using394

the Lorenz63 model. Control input 𝑢𝑥 is applied at each time step using (20), and the prediction395

horizon 𝑇𝑝 is set to 48 steps (= 48 hour). For this demonstration, we use the 4DEnVar-based396

EnMPC with 10 ensemble members. The parameters for this experiment are summarized in Table397

1a.398
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When 𝑎 = 100, the control inputs are relatively large due to delayed activation of the penalty399

term, resulting in spike-like control behavior (Fig. 3a,d). Decreasing the value of 𝑎 activates400

the penalty more gradually, allowing the control to respond earlier, thus preventing 𝑥 < 0 more401

smoothly (Figs. 3b–c and e–f). These results show that the choice of 𝑎 is critical and depends on402

the specific control objectives. When the control objective is to maintain the system state close to403

the threshold, a larger 𝑎 may be necessary, leading to larger and abrupt control inputs. On the other404

hand, when staying further from the threshold is acceptable, a smaller 𝑎 can reduce the overall405

control inputs, although the model states may not closely approach the threshold. This highlights406

the importance of selecting an appropriate objective output operator to balance the desired control407

objectives with the acceptable magnitude of control inputs.408

Fig. 2. Comparison of the objective output operator 𝐻r (𝑥) = log(1 + exp(−𝑎𝑥))/𝑎 used in this study for

different values of the positive constant parameter 𝑎. The solid line, dashed line, and dotted line represent the

cases where 𝑎 = 0.5, 𝑎 = 1, and 𝑎 = 100, respectively. The horizontal axis represents values in the model space,

while the vertical axis represents the values projected into the objective output space using the operator.

409

410

411

412

2) Trajectory tracking approach418

In the trajectory tracking approach, the current study first defines a reference trajectory that419

satisfies the desired constraints. We then control or guide the system to follow this trajectory by420
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Fig. 3. Comparison of results based on different values of 𝑎 in the objective output operator shown in Fig. 2.

The Lorenz63 model is controlled to keep the 𝑥 value positive, showing the behavior over the first 1200 steps.

Panels (a), (b), and (c) show the attractors of the controlled NR for 𝑎 = 100, 𝑎 = 1, and 𝑎 = 0.5, respectively.

Panels (d), (e), and (f) show the evolution of 𝑥 (left axis) in the controlled NR over time, with the blue lines

indicating the control inputs |𝑢𝑥 | (right axis).

413

414

415

416

417

assimilating objective outputs. The objective outputs are generated by taking the states of the421

reference trajectory at each observation time.422

For the experiment using the Lorenz63 model (as detailed in Sec. 5b), we use the trajectory423

generated by Kawasaki and Kotsuki (2024) as the reference. This trajectory satisfies the constraint424

𝑥 > 0 and is obtained using conventional MPC by applying control inputs 𝑢𝑥 , 𝑢𝑦, and 𝑢𝑧 to the425

Lorenz63 model. We generate the objective outputs from the reference every time step for all426

variables, 𝑥, 𝑦, 𝑧. The objective output operator, 𝐻r, is set to the identity operator in this approach,427

meaning that the objective outputs directly correspond to the states of the reference trajectory428

without additional transformations.429
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Table 1. Experimental setup

5. Experimental results430

In this section, we present the experimental results evaluating the performance of the proposed431

EnMPC using the Lorenz63 model. We compare two approaches, the penalty term approach432

and the trajectory tracking approach, for the control problem of restricting the state variable 𝑥433

to positive values. Furthermore, we examine how the choice of methods forming the basis of434

EnMPC (4DEnVar, EnKS, and PS) impacts its performance. In addition, we compare EnMPC435

with conventional MPC to assess its computational efficiency and control performance. Note that436

for the conventional MPC, we set the weighting matrix for the control input Cu to 0.01I, which437

matches the objective outputs error covariance matrix Cr. We use an ensemble size of 10 for all438

experiments. All experiments are conducted using MATLAB on a typical laptop.439

a. Control using the penalty term approach440

In the penalty term approach, we restrict 𝑥 to positive values by imposing penalties on regions441

where 𝑥 ≤ 0. Specifically, we utilize an objective output 𝑦r = 0 and a control operator 𝐻r (𝑥) =442

log(1+ exp(−𝑎𝑥))/𝑎 with 𝑎 = 0.5. In this case, we apply control only through 𝑢𝑥 using (20).443

As shown in Fig. 4a, while 𝑥 fluctuates between positive and negative values in the NR, all four444

MPC methods generally restrict 𝑥 to the 𝑥 > 0 region. This demonstrates that the proposed method445

successfully solves the MPC problem using ensemble approximations. In addition, the penalty446

term approach achieves control that takes into account constraint conditions by using the objective447

output operator.448

The comparison of control inputs 𝑢𝑥 shown in Fig. 4e shows that, during the initial 400 steps,449

the control input for EnMPC based on PS is larger than those for the other methods (4DEnVar450

and EnKS). As described in Sec. 2, this is because EnKS-based and 4DEnVar-based EnMPC use451
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ensemble-based linear transformations, which help retain the statistical structure of the original452

ensemble (Lorenc 2003; Poterjoy and Zhang 2015; Houtekamer and Zhang 2016; Kurosawa and453

Poterjoy 2023). Specifically, when the cost function includes a penalty term weighted by the454

inverse of the ensemble covariance, the solution is guided toward regions of high ensemble density.455

This acts as a form of regularization, effectively constraining the solution to subspaces spanned456

by the dominant ensemble modes and scaling it according to ensemble uncertainty (Lorenc 2003;457

Houtekamer and Zhang 2016). Compared to approaches that do not explicitly incorporate such458

statistical information, this often results in smaller and more dynamically consistent control inputs.459

In contrast, PS-based EnMPC determines the analysis state through resampling, where particles460

with higher weights are replicated while those with lower weights are removed. This can lead461

to the analysis state being dominated by a few specific particles, potentially causing more abrupt462

changes in the control input. However, this experiment uses a nonlinear observation operator463

𝐻r (𝑥) = log(1+exp(−𝑎𝑥))/𝑎 as the penalty function, which posed challenges for EnKS-based and464

EnVar-based EnMPC as they inherently assume Gaussianity. On the other hand, PS-based EnMPC465

is more appropriate for handling non-Gaussian structures and is less affected by such assumptions466

(Poterjoy 2016; Poterjoy et al. 2019; Kurosawa and Poterjoy 2021).467

Beyond step 400, the success rate of control approaches nearly 100% for all MPC methods,468

and during this period, the magnitudes of control inputs for the three EnMPC methods show no469

significant differences. This suggests that the choice of data assimilation method influences the470

performance especially during the initial stages.471

When comparing conventional MPC and EnMPC, it becomes clear that EnMPC achieves sig-472

nificantly reduced control input magnitudes, which leads to smaller oscillations compared to473

conventional MPC. This is likely because conventional MPC uses a fixed control weight matrix474

Cu in (1), whereas EnMPC estimates it from the analysis ensemble as Pa in (16).475

b. Control using the trajectory tracking approach482

The trajectory tracking approach controls the system state towards a predefined reference trajec-483

tory that satisfies 𝑥 > 0. We employ the trajectory data from Kawasaki and Kotsuki (2024) as the484

reference and consider all three control variables 𝑢𝑥 , 𝑢𝑦, and 𝑢𝑧 using (21).485
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Fig. 4. Comparison of results using the conventional MPC and EnMPC with the penalty term approach. (a)

The trajectory of the uncontrolled and controlled NR, (b) time series of the values of 𝑥, (c) 𝑦, and (d) 𝑧 in the

controlled NR, and (e) the estimated control input 𝑢𝑥 . The black dots represent the trajectory of the uncontrolled

NR, and the yellow dots show controlled NR by the conventional MPC. Green, red, and blue represent the

trajectories of the NR controlled by EnMPC based on 4DEnVar, EnKS, and PS, respectively. The dashed line in

(b) indicates the control objective, where 𝑥 > 0.
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480
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The results demonstrate that the proposed EnMPC can accurately follow the reference trajectory486

(Fig. 5a). In particular, 4DEnVar-based and EnKS-based EnMPC provide smooth and stable487

control inputs, while PS-based EnMPC requires larger control inputs (Figs. 5e–g ). As mentioned488

in Sec. 5a, this is because PS-based EnMPC uses particles to represent the distribution, whereas489

the other two methods use ensemble-based transformations. In terms of tracking performance,490

PS-based EnMPC achieves significantly lower root mean squared error (RMSE) of 0.22 compared491

to 3.04 and 3.03 for 4DEnVar-based and EnKS-based EnMPC, respectively (Fig. 6). This suggests492

that the PS-based EnMPC, known for its flexibility in handling nonlinear regimes, can more493

accurately represent complex behaviors like the reference trajectory. In contrast, EnKS-based and494

EnVar-based EnMPC struggle to properly incorporate the nonlinearities of the reference trajectory,495

resulting in larger RMSE values.496
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When compared to conventional MPC, all EnMPC methods exhibit significant advantages in497

both tracking performance and control efficiency. Conventional MPC shows an RMSE of 5.91498

(Fig. 6), which is considerably higher than any of the EnMPC methods, demonstrating its difficulty499

in accurately following the reference trajectory. As discussed in Sec.5a, this is likely due to the500

fixed control weight matrix Cu in conventional MPC, which limits its flexibility in adapting to the501

reference trajectory in the prediction horizon.502

To enhance the accuracy of the control in both conventional MPC and EnMPC, or to reduce503

the abrupt control inputs in PS-based EnMPC, improving the prediction horizon or increasing504

ensemble sizes would be effective. These improvements remain an important subject for future505

research.506

Fig. 5. As in Fig. 4, but the optimal control input values are determined to follow a reference trajectory that

satisfies the constraints. The black dots represent the reference trajectory.

507

508
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Fig. 6. Comparison of the average control input magnitudes (|𝑢𝑥 |, |𝑢𝑦 |, and |𝑢𝑧 |; left axis) and RMSE (right

axis) with respect to the reference trajectory, calculated as averages from step 400 to step 2000. Yellow, green,

red, and blue bars represent conventional MPC, 4DEnVar-based EnMPC, EnKS-based EnMPC, and PS-based

EnMPC, respectively. These values correspond to the results in Fig. 5.
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c. Impact of prediction horizon on computational time and control performance513

This section provides a comparison of the computational time required by conventional MPC and514

various EnMPC methods across different prediction horizons (𝑇𝑝). We perform the comparison515

for both the penalty term approach (Fig. 7a) and the trajectory tracking approach (Fig. 7b). The516

success rate in Fig. 7a is computed as the proportion of time steps—excluding the initial 200517

spin-up steps—during which the value of 𝑥 remains positive.518

In the penalty term approach (Fig. 7a), EnMPC methods consistently achieve high success rates519

(approximately 1.0) across all prediction horizons. In contrast, conventional MPC fails to control520

effectively when the prediction horizon is short (6 and 24 hours). In terms of computational521

time, conventional MPC exhibits a sharp increase as 𝑇𝑝 extends, reflecting its computational522

inefficiency due to the need for full-model evaluations to calculate optimal control inputs. For523

example, at 𝑇𝑝 = 120 hr, the computational time for conventional MPC is 620 s. On the other hand,524
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the EnMPC methods all show a much lower computational times, with the PS-based approach525

yielding 121 s, the 4DEnVar-based approach 81 s, and the EnKF-based approach being the most526

computationally efficient at 16 s. This is because the 4DEnVar and PS methods used in the current527

study require iterations to determine the optimal control inputs, whereas EnKS does not. Exploring528

alternative data assimilation methods to further reduce computational time remains an important529

future research topic.530

For the trajectory tracking approach (Fig. 7b), the PS-based EnMPC achieves the lowest RMSE,531

maintaining high control accuracy across all prediction horizons. This is because PS does not as-532

sume Gaussianity and effectively handles the nonlinear regime, making it well-suited for accurately533

representing complex reference trajectories. In contrast, conventional MPC exhibits significantly534

higher RMSE values, indicating difficulty in tracking the reference trajectory, regardless of 𝑇𝑝.535

In terms of computational time, PS-based EnMPC requires slightly higher computational costs536

compared to other EnMPC methods, but it remains much more efficient than conventional MPC537

(e.g., at 𝑇𝑝 = 120 hr: conventional MPC = 651 s, 4DEnVar-based = 119 s, EnKF-based = 16 s,538

PS-based = 158 s). This suggests that PS-based EnMPC is a strong candidate for applications539

where high control accuracy is prioritized. Note that the relatively higher computational cost of540

PS-based EnMPC in this study is due to the iterative approach used to prevent particle degeneracy541

(Poterjoy et al. 2019; Poterjoy 2022). Alternative PF or PS formulations may reduce computational542

costs while maintaining performance (Penny and Miyoshi 2016; van Leeuwen et al. 2019; Kotsuki543

et al. 2022).544

In summary, these results demonstrate that EnMPC outperforms conventional MPC in both545

computational efficiency and control performance. Particularly for longer prediction horizons,546

EnMPC effectively limits computational cost increases while maintaining high control accuracy.547

6. Conclusion556

The current study proposes EnMPC, a nonlinear control framework that combines MPC with557

ensemble data assimilation. EnMPC reduces computational cost while maintaining accurate control558

of nonlinear systems by using ensemble approximation. EnMPC assimilates objective outputs in559

a manner similar to actual observations in data assimilation to reflect constraints or reference560

trajectories of control problems. This unique approach provides an effective and flexible solution561
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Fig. 7. Comparison of computational time and performance metrics (success rate and RMSE) as a function of

the prediction horizon (𝑇𝑝). Panel (a) shows the penalty term approach, depicting computational time (bars, left

axis) and success rate (circles, right axis), where a higher success rate indicates more effective control. Panel (b)

illustrates the trajectory tracking approach, highlighting computational time (bars, left axis) and RMSE (triangles,

right axis), where a lower RMSE indicates more accurate tracking of the reference trajectory. Yellow, green,

red, and blue bars represent conventional MPC, 4DEnVar-based EnMPC, EnKS-based EnMPC, and PS-based

EnMPC, respectively. The values for 𝑇𝑝 = 48 hours in panel (a) and (b) correspond to the results presented in

Fig. 4 and 5, respectively.
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for addressing the challenges posed by complex and high-dimensional systems, such as those in562

meteorology and weather control.563

We introduce two methods within the EnMPC framework: the penalty term approach and the564

trajectory tracking approach. The penalty term approach imposes penalties when the system565

violates constraints, ensuring the system remains within acceptable behavior. In contrast, the566

trajectory tracking approach guides the system to follow a pre-defined trajectory that is designed to567

satisfy the constraints. Both approaches demonstrate their effectiveness in controlling the chaotic568

dynamics of the Lorenz63 model, showing their potential to manage complex system behavior and569

their adaptability to diverse control objectives. The choice between these two approaches depends570

on the specific control problem. Selecting the appropriate method based on its characteristics and571

objectives is essential and remains a key area for future research.572

Our experiments highlight the strengths of EnMPC compared to conventional MPC, particularly573

in terms of computational efficiency and flexibility. This advantage is primarily due to the fact574

that conventional MPC relies on the full model for optimization, whereas EnMPC uses ensemble575

approximations. Additionally, EnMPC determines the weights for control inputs using the analysis576

error covariance derived from ensemble data assimilation, while conventional MPC uses fixed577

control weights, limiting its adaptability to varying system dynamics.578

A key aspect of our investigation involves exploring the performance of different ensemble data579

assimilation methods that form the foundation of the EnMPC framework, which highlights the580

importance of selecting the appropriate ensemble smoother method, such as 4DEnVar, EnKS, and581

PS. For instance, while 4DEnVar-based and EnKS-based EnMPC provide smooth and efficient582

control, the flexibility of PS-based EnMPC in handling nonlinear and non-Gaussian dynamics583

leads to greater accuracy, particularly when tracking nonlinear reference trajectories.584

In particular, ensemble methods including PFs can be adapted to higher-dimensional settings by585

introducing localization techniques, as demonstrated in prior data assimilation studies. While PFs586

face challenges such as degeneracy in high-dimensional spaces, recent advances in localized and587

hybrid PF approaches offer promising directions for overcoming these limitations.588

Despite its advantages, EnMPC is sensitive to factors such as the objective outputs, prediction589

horizon, ensemble size, and the choice of data assimilation method. For instance, achieving590

optimal performance with the penalty term approach requires careful tuning of objective output591
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operators. The sensitivities highlight the need for further investigation and optimization to enhance592

the effectiveness and applicability of EnMPC.593

In conclusion, EnMPC represents a promising framework for controlling chaotic and nonlin-594

ear systems. While our current validation is based on the simplified model, future work will595

explore its applicability to more complex, high-dimensional systems. These include not only596

operational weather models but also other nonlinear dynamical systems such as ocean circulation597

models, ecosystem dynamics, and economic or neural systems. Addressing key challenges—such598

as improving computational efficiency, optimizing parameter selection, and mitigating sampling599

errors—will be essential for these extensions. EnMPC thus holds potential as a powerful tool for600

diverse applications in the mid to long term, including but not limited to weather control.601
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